Properties

Label 2-4788-1.1-c1-0-31
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.874·5-s − 7-s − 2.82·11-s + 1.23·13-s + 3.70·17-s + 19-s + 2.82·23-s − 4.23·25-s + 7.19·29-s − 5.70·31-s + 0.874·35-s − 4.47·37-s − 8.48·41-s − 0.763·43-s + 5.45·47-s + 49-s − 4.37·53-s + 2.47·55-s + 14.8·59-s − 12.4·61-s − 1.08·65-s + 11.4·67-s + 3.03·71-s + 6.94·73-s + 2.82·77-s − 1.52·79-s − 4.78·83-s + ⋯
L(s)  = 1  − 0.390·5-s − 0.377·7-s − 0.852·11-s + 0.342·13-s + 0.897·17-s + 0.229·19-s + 0.589·23-s − 0.847·25-s + 1.33·29-s − 1.02·31-s + 0.147·35-s − 0.735·37-s − 1.32·41-s − 0.116·43-s + 0.795·47-s + 0.142·49-s − 0.600·53-s + 0.333·55-s + 1.92·59-s − 1.59·61-s − 0.134·65-s + 1.39·67-s + 0.360·71-s + 0.812·73-s + 0.322·77-s − 0.171·79-s − 0.524·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + 0.874T + 5T^{2} \)
11 \( 1 + 2.82T + 11T^{2} \)
13 \( 1 - 1.23T + 13T^{2} \)
17 \( 1 - 3.70T + 17T^{2} \)
23 \( 1 - 2.82T + 23T^{2} \)
29 \( 1 - 7.19T + 29T^{2} \)
31 \( 1 + 5.70T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 + 8.48T + 41T^{2} \)
43 \( 1 + 0.763T + 43T^{2} \)
47 \( 1 - 5.45T + 47T^{2} \)
53 \( 1 + 4.37T + 53T^{2} \)
59 \( 1 - 14.8T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 - 11.4T + 67T^{2} \)
71 \( 1 - 3.03T + 71T^{2} \)
73 \( 1 - 6.94T + 73T^{2} \)
79 \( 1 + 1.52T + 79T^{2} \)
83 \( 1 + 4.78T + 83T^{2} \)
89 \( 1 + 8.48T + 89T^{2} \)
97 \( 1 + 3.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.034049779544003165818549812882, −7.18516421446052085862803312594, −6.60312597456993023799686477112, −5.55540532522430471845560115726, −5.15763608087347194700895880092, −4.03233584795829395532867708854, −3.35196890872376221500329790374, −2.54446694756704912200377162084, −1.29759661102278597750703260628, 0, 1.29759661102278597750703260628, 2.54446694756704912200377162084, 3.35196890872376221500329790374, 4.03233584795829395532867708854, 5.15763608087347194700895880092, 5.55540532522430471845560115726, 6.60312597456993023799686477112, 7.18516421446052085862803312594, 8.034049779544003165818549812882

Graph of the $Z$-function along the critical line