Properties

Label 2-4788-1.1-c1-0-9
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.29·5-s + 7-s − 2·11-s + 5.71·13-s − 1.29·17-s − 19-s − 2·23-s − 3.31·25-s + 10.7·29-s − 3.71·31-s − 1.29·35-s − 0.599·37-s + 4·41-s + 10.3·43-s − 10.1·47-s + 49-s − 0.700·53-s + 2.59·55-s + 3.40·61-s − 7.42·65-s − 2.59·67-s + 0.700·71-s + 13.4·73-s − 2·77-s − 6.02·79-s + 12.7·83-s + 1.68·85-s + ⋯
L(s)  = 1  − 0.581·5-s + 0.377·7-s − 0.603·11-s + 1.58·13-s − 0.315·17-s − 0.229·19-s − 0.417·23-s − 0.662·25-s + 1.99·29-s − 0.666·31-s − 0.219·35-s − 0.0985·37-s + 0.624·41-s + 1.57·43-s − 1.47·47-s + 0.142·49-s − 0.0961·53-s + 0.350·55-s + 0.435·61-s − 0.920·65-s − 0.317·67-s + 0.0831·71-s + 1.57·73-s − 0.227·77-s − 0.677·79-s + 1.39·83-s + 0.183·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.727220169\)
\(L(\frac12)\) \(\approx\) \(1.727220169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 1.29T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 5.71T + 13T^{2} \)
17 \( 1 + 1.29T + 17T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 - 10.7T + 29T^{2} \)
31 \( 1 + 3.71T + 31T^{2} \)
37 \( 1 + 0.599T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 10.3T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 + 0.700T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 3.40T + 61T^{2} \)
67 \( 1 + 2.59T + 67T^{2} \)
71 \( 1 - 0.700T + 71T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 + 6.02T + 79T^{2} \)
83 \( 1 - 12.7T + 83T^{2} \)
89 \( 1 - 4T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.139254648520164096402630087330, −7.84207010344993905814159649291, −6.78198260623656034077653943532, −6.15378104366534507591352389367, −5.36870529312430896292562431256, −4.43992733834217977085799158121, −3.85133339867108035484888162138, −2.94396996101143365399959939923, −1.88759697978961040943738250722, −0.73338856144486033953605719948, 0.73338856144486033953605719948, 1.88759697978961040943738250722, 2.94396996101143365399959939923, 3.85133339867108035484888162138, 4.43992733834217977085799158121, 5.36870529312430896292562431256, 6.15378104366534507591352389367, 6.78198260623656034077653943532, 7.84207010344993905814159649291, 8.139254648520164096402630087330

Graph of the $Z$-function along the critical line