L(s) = 1 | − 1.29·5-s + 7-s − 2·11-s + 5.71·13-s − 1.29·17-s − 19-s − 2·23-s − 3.31·25-s + 10.7·29-s − 3.71·31-s − 1.29·35-s − 0.599·37-s + 4·41-s + 10.3·43-s − 10.1·47-s + 49-s − 0.700·53-s + 2.59·55-s + 3.40·61-s − 7.42·65-s − 2.59·67-s + 0.700·71-s + 13.4·73-s − 2·77-s − 6.02·79-s + 12.7·83-s + 1.68·85-s + ⋯ |
L(s) = 1 | − 0.581·5-s + 0.377·7-s − 0.603·11-s + 1.58·13-s − 0.315·17-s − 0.229·19-s − 0.417·23-s − 0.662·25-s + 1.99·29-s − 0.666·31-s − 0.219·35-s − 0.0985·37-s + 0.624·41-s + 1.57·43-s − 1.47·47-s + 0.142·49-s − 0.0961·53-s + 0.350·55-s + 0.435·61-s − 0.920·65-s − 0.317·67-s + 0.0831·71-s + 1.57·73-s − 0.227·77-s − 0.677·79-s + 1.39·83-s + 0.183·85-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.727220169 |
L(21) |
≈ |
1.727220169 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1+1.29T+5T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−5.71T+13T2 |
| 17 | 1+1.29T+17T2 |
| 23 | 1+2T+23T2 |
| 29 | 1−10.7T+29T2 |
| 31 | 1+3.71T+31T2 |
| 37 | 1+0.599T+37T2 |
| 41 | 1−4T+41T2 |
| 43 | 1−10.3T+43T2 |
| 47 | 1+10.1T+47T2 |
| 53 | 1+0.700T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−3.40T+61T2 |
| 67 | 1+2.59T+67T2 |
| 71 | 1−0.700T+71T2 |
| 73 | 1−13.4T+73T2 |
| 79 | 1+6.02T+79T2 |
| 83 | 1−12.7T+83T2 |
| 89 | 1−4T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.139254648520164096402630087330, −7.84207010344993905814159649291, −6.78198260623656034077653943532, −6.15378104366534507591352389367, −5.36870529312430896292562431256, −4.43992733834217977085799158121, −3.85133339867108035484888162138, −2.94396996101143365399959939923, −1.88759697978961040943738250722, −0.73338856144486033953605719948,
0.73338856144486033953605719948, 1.88759697978961040943738250722, 2.94396996101143365399959939923, 3.85133339867108035484888162138, 4.43992733834217977085799158121, 5.36870529312430896292562431256, 6.15378104366534507591352389367, 6.78198260623656034077653943532, 7.84207010344993905814159649291, 8.139254648520164096402630087330