L(s) = 1 | + (−1.34 − 0.443i)2-s + (0.707 + 0.707i)3-s + (1.60 + 1.19i)4-s + (1.27 − 1.27i)5-s + (−0.635 − 1.26i)6-s + 0.158i·7-s + (−1.62 − 2.31i)8-s + 1.00i·9-s + (−2.27 + 1.14i)10-s + (−3.79 + 3.79i)11-s + (0.292 + 1.97i)12-s + (−4.21 − 4.21i)13-s + (0.0705 − 0.213i)14-s + 1.79·15-s + (1.15 + 3.82i)16-s + 3.05·17-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.313i)2-s + (0.408 + 0.408i)3-s + (0.803 + 0.595i)4-s + (0.568 − 0.568i)5-s + (−0.259 − 0.515i)6-s + 0.0600i·7-s + (−0.575 − 0.817i)8-s + 0.333i·9-s + (−0.718 + 0.361i)10-s + (−1.14 + 1.14i)11-s + (0.0845 + 0.571i)12-s + (−1.16 − 1.16i)13-s + (0.0188 − 0.0570i)14-s + 0.464·15-s + (0.289 + 0.957i)16-s + 0.740·17-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.995+0.0985i)Λ(2−s)
Λ(s)=(=(48s/2ΓC(s+1/2)L(s)(0.995+0.0985i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.995+0.0985i
|
Analytic conductor: |
0.383281 |
Root analytic conductor: |
0.619097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1/2), 0.995+0.0985i)
|
Particular Values
L(1) |
≈ |
0.645225−0.0318835i |
L(21) |
≈ |
0.645225−0.0318835i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.34+0.443i)T |
| 3 | 1+(−0.707−0.707i)T |
good | 5 | 1+(−1.27+1.27i)T−5iT2 |
| 7 | 1−0.158iT−7T2 |
| 11 | 1+(3.79−3.79i)T−11iT2 |
| 13 | 1+(4.21+4.21i)T+13iT2 |
| 17 | 1−3.05T+17T2 |
| 19 | 1+(2.15+2.15i)T+19iT2 |
| 23 | 1+2.82iT−23T2 |
| 29 | 1+(−2.09−2.09i)T+29iT2 |
| 31 | 1−4.15T+31T2 |
| 37 | 1+(5.98−5.98i)T−37iT2 |
| 41 | 1−2.60iT−41T2 |
| 43 | 1+(−5.75+5.75i)T−43iT2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1+(−3.55+3.55i)T−53iT2 |
| 59 | 1+(−4+4i)T−59iT2 |
| 61 | 1+(−3.66−3.66i)T+61iT2 |
| 67 | 1+(−0.767−0.767i)T+67iT2 |
| 71 | 1+0.317iT−71T2 |
| 73 | 1−1.33iT−73T2 |
| 79 | 1+9.69T+79T2 |
| 83 | 1+(−0.115−0.115i)T+83iT2 |
| 89 | 1+14.3iT−89T2 |
| 97 | 1+0.571T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.74639593513314400293128352482, −14.91568359895856198804697804233, −13.07398197365761648406200420026, −12.27148432817518999734011634912, −10.36853297439090355671021383802, −9.883707634985119969315230270295, −8.517736335457635755693965821627, −7.36084009320182875941460385472, −5.11635332520457461218234470740, −2.58012679175009916972193838344,
2.49704459496081741143324106588, 5.81495267194521250421158340232, 7.14995200691863597812186463687, 8.305522493472280612478009275388, 9.671708471960232416786633649342, 10.67469645814641764617262851608, 12.08375113252286482808334836731, 13.82099296280306575777526224297, 14.53297203486061588609015430457, 15.88964805636840472698189183880