L(s) = 1 | + (−1.34 − 0.443i)2-s + (0.707 + 0.707i)3-s + (1.60 + 1.19i)4-s + (1.27 − 1.27i)5-s + (−0.635 − 1.26i)6-s + 0.158i·7-s + (−1.62 − 2.31i)8-s + 1.00i·9-s + (−2.27 + 1.14i)10-s + (−3.79 + 3.79i)11-s + (0.292 + 1.97i)12-s + (−4.21 − 4.21i)13-s + (0.0705 − 0.213i)14-s + 1.79·15-s + (1.15 + 3.82i)16-s + 3.05·17-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.313i)2-s + (0.408 + 0.408i)3-s + (0.803 + 0.595i)4-s + (0.568 − 0.568i)5-s + (−0.259 − 0.515i)6-s + 0.0600i·7-s + (−0.575 − 0.817i)8-s + 0.333i·9-s + (−0.718 + 0.361i)10-s + (−1.14 + 1.14i)11-s + (0.0845 + 0.571i)12-s + (−1.16 − 1.16i)13-s + (0.0188 − 0.0570i)14-s + 0.464·15-s + (0.289 + 0.957i)16-s + 0.740·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.645225 - 0.0318835i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.645225 - 0.0318835i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.443i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
good | 5 | \( 1 + (-1.27 + 1.27i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.158iT - 7T^{2} \) |
| 11 | \( 1 + (3.79 - 3.79i)T - 11iT^{2} \) |
| 13 | \( 1 + (4.21 + 4.21i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.05T + 17T^{2} \) |
| 19 | \( 1 + (2.15 + 2.15i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (-2.09 - 2.09i)T + 29iT^{2} \) |
| 31 | \( 1 - 4.15T + 31T^{2} \) |
| 37 | \( 1 + (5.98 - 5.98i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.60iT - 41T^{2} \) |
| 43 | \( 1 + (-5.75 + 5.75i)T - 43iT^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + (-3.55 + 3.55i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4 + 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.66 - 3.66i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.767 - 0.767i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.317iT - 71T^{2} \) |
| 73 | \( 1 - 1.33iT - 73T^{2} \) |
| 79 | \( 1 + 9.69T + 79T^{2} \) |
| 83 | \( 1 + (-0.115 - 0.115i)T + 83iT^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 0.571T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.74639593513314400293128352482, −14.91568359895856198804697804233, −13.07398197365761648406200420026, −12.27148432817518999734011634912, −10.36853297439090355671021383802, −9.883707634985119969315230270295, −8.517736335457635755693965821627, −7.36084009320182875941460385472, −5.11635332520457461218234470740, −2.58012679175009916972193838344,
2.49704459496081741143324106588, 5.81495267194521250421158340232, 7.14995200691863597812186463687, 8.305522493472280612478009275388, 9.671708471960232416786633649342, 10.67469645814641764617262851608, 12.08375113252286482808334836731, 13.82099296280306575777526224297, 14.53297203486061588609015430457, 15.88964805636840472698189183880