L(s) = 1 | + (0.635 − 1.26i)2-s + (0.707 + 0.707i)3-s + (−1.19 − 1.60i)4-s + (−2.68 + 2.68i)5-s + (1.34 − 0.443i)6-s − 2.15i·7-s + (−2.78 + 0.484i)8-s + 1.00i·9-s + (1.68 + 5.09i)10-s + (1.79 − 1.79i)11-s + (0.292 − 1.97i)12-s + (1.38 + 1.38i)13-s + (−2.72 − 1.37i)14-s − 3.79·15-s + (−1.15 + 3.82i)16-s − 0.224·17-s + ⋯ |
L(s) = 1 | + (0.449 − 0.893i)2-s + (0.408 + 0.408i)3-s + (−0.595 − 0.803i)4-s + (−1.20 + 1.20i)5-s + (0.548 − 0.181i)6-s − 0.816i·7-s + (−0.985 + 0.171i)8-s + 0.333i·9-s + (0.533 + 1.61i)10-s + (0.542 − 0.542i)11-s + (0.0845 − 0.571i)12-s + (0.383 + 0.383i)13-s + (−0.728 − 0.366i)14-s − 0.980·15-s + (−0.289 + 0.957i)16-s − 0.0545·17-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.773+0.633i)Λ(2−s)
Λ(s)=(=(48s/2ΓC(s+1/2)L(s)(0.773+0.633i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.773+0.633i
|
Analytic conductor: |
0.383281 |
Root analytic conductor: |
0.619097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1/2), 0.773+0.633i)
|
Particular Values
L(1) |
≈ |
0.871540−0.311560i |
L(21) |
≈ |
0.871540−0.311560i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.635+1.26i)T |
| 3 | 1+(−0.707−0.707i)T |
good | 5 | 1+(2.68−2.68i)T−5iT2 |
| 7 | 1+2.15iT−7T2 |
| 11 | 1+(−1.79+1.79i)T−11iT2 |
| 13 | 1+(−1.38−1.38i)T+13iT2 |
| 17 | 1+0.224T+17T2 |
| 19 | 1+(−0.158−0.158i)T+19iT2 |
| 23 | 1+2.82iT−23T2 |
| 29 | 1+(1.85+1.85i)T+29iT2 |
| 31 | 1−1.84T+31T2 |
| 37 | 1+(3.66−3.66i)T−37iT2 |
| 41 | 1−5.88iT−41T2 |
| 43 | 1+(7.75−7.75i)T−43iT2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1+(−7.51+7.51i)T−53iT2 |
| 59 | 1+(−4+4i)T−59iT2 |
| 61 | 1+(−5.98−5.98i)T+61iT2 |
| 67 | 1+(10.4+10.4i)T+67iT2 |
| 71 | 1−4.31iT−71T2 |
| 73 | 1−5.97iT−73T2 |
| 79 | 1−15.0T+79T2 |
| 83 | 1+(10.1+10.1i)T+83iT2 |
| 89 | 1−1.42iT−89T2 |
| 97 | 1+16.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.15685271547203927047634424941, −14.41983232478527245787039181785, −13.45950518284363879693775285106, −11.73266118695565942172873152568, −11.02654065873239224617703655017, −10.01882682873606116854011464606, −8.340574390110295203834746480786, −6.67926877056311355946931200854, −4.23338644021661599711126263758, −3.26001583815327479995642235752,
3.86179068547023561844984227152, 5.37842133309248723250807203915, 7.20809824324198859285104900790, 8.381293715168107984791390773270, 9.086993693289973544211052872954, 11.88643337552233925390382200980, 12.43031386523642399712733001277, 13.52401554393183182785110398502, 15.02615018984691346279224474452, 15.60478899011562921687979644080