L(s) = 1 | + (−1.84 + 0.777i)2-s + (−1.22 + 1.22i)3-s + (2.79 − 2.86i)4-s + (−4.78 + 4.78i)5-s + (1.30 − 3.20i)6-s − 10.3·7-s + (−2.91 + 7.45i)8-s − 2.99i·9-s + (5.09 − 12.5i)10-s + (−0.526 − 0.526i)11-s + (0.0930 + 6.92i)12-s + (17.2 + 17.2i)13-s + (19.0 − 8.03i)14-s − 11.7i·15-s + (−0.429 − 15.9i)16-s + 4.71·17-s + ⋯ |
L(s) = 1 | + (−0.921 + 0.388i)2-s + (−0.408 + 0.408i)3-s + (0.697 − 0.716i)4-s + (−0.957 + 0.957i)5-s + (0.217 − 0.534i)6-s − 1.47·7-s + (−0.364 + 0.931i)8-s − 0.333i·9-s + (0.509 − 1.25i)10-s + (−0.0478 − 0.0478i)11-s + (0.00775 + 0.577i)12-s + (1.32 + 1.32i)13-s + (1.35 − 0.573i)14-s − 0.781i·15-s + (−0.0268 − 0.999i)16-s + 0.277·17-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(−0.933−0.357i)Λ(3−s)
Λ(s)=(=(48s/2ΓC(s+1)L(s)(−0.933−0.357i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
−0.933−0.357i
|
Analytic conductor: |
1.30790 |
Root analytic conductor: |
1.14363 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1), −0.933−0.357i)
|
Particular Values
L(23) |
≈ |
0.0629719+0.340402i |
L(21) |
≈ |
0.0629719+0.340402i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.84−0.777i)T |
| 3 | 1+(1.22−1.22i)T |
good | 5 | 1+(4.78−4.78i)T−25iT2 |
| 7 | 1+10.3T+49T2 |
| 11 | 1+(0.526+0.526i)T+121iT2 |
| 13 | 1+(−17.2−17.2i)T+169iT2 |
| 17 | 1−4.71T+289T2 |
| 19 | 1+(2.53−2.53i)T−361iT2 |
| 23 | 1+12.5T+529T2 |
| 29 | 1+(2.19+2.19i)T+841iT2 |
| 31 | 1−28.0iT−961T2 |
| 37 | 1+(32.1−32.1i)T−1.36e3iT2 |
| 41 | 1+23.1iT−1.68e3T2 |
| 43 | 1+(−4.79−4.79i)T+1.84e3iT2 |
| 47 | 1+39.0iT−2.20e3T2 |
| 53 | 1+(27.9−27.9i)T−2.80e3iT2 |
| 59 | 1+(−79.8−79.8i)T+3.48e3iT2 |
| 61 | 1+(36.7+36.7i)T+3.72e3iT2 |
| 67 | 1+(10.9−10.9i)T−4.48e3iT2 |
| 71 | 1−52.6T+5.04e3T2 |
| 73 | 1+67.8iT−5.32e3T2 |
| 79 | 1−56.4iT−6.24e3T2 |
| 83 | 1+(58.3−58.3i)T−6.88e3iT2 |
| 89 | 1−131.iT−7.92e3T2 |
| 97 | 1−60.9T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.00700335030649803580166157904, −15.35761418726261111186503233930, −13.96656529575482507407868602656, −12.00735153462705153357114514190, −10.99880154987976183564957314755, −10.01246272634389956576559926436, −8.734857522999047213730034458925, −7.02875048144783592790963465225, −6.22577571899850869857821276501, −3.54736934419977414921133792220,
0.49614870507904859657659736481, 3.54790274433153807732361457807, 6.12535704562413781966750438704, 7.69009386897323549059180946484, 8.738685452439597225442489337739, 10.12946265949644372215873927041, 11.40793802827014359211937876288, 12.62439923385948609598135588456, 13.02508946677102716289408745725, 15.78520197405580737027596421587