L(s) = 1 | + (−1 + 2.82i)3-s + 5.65i·5-s + 6·7-s + (−7.00 − 5.65i)9-s − 5.65i·11-s + 10·13-s + (−16.0 − 5.65i)15-s − 22.6i·17-s − 2·19-s + (−6 + 16.9i)21-s + 11.3i·23-s − 7.00·25-s + (23.0 − 14.1i)27-s + 16.9i·29-s + 22·31-s + ⋯ |
L(s) = 1 | + (−0.333 + 0.942i)3-s + 1.13i·5-s + 0.857·7-s + (−0.777 − 0.628i)9-s − 0.514i·11-s + 0.769·13-s + (−1.06 − 0.377i)15-s − 1.33i·17-s − 0.105·19-s + (−0.285 + 0.808i)21-s + 0.491i·23-s − 0.280·25-s + (0.851 − 0.523i)27-s + 0.585i·29-s + 0.709·31-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.333−0.942i)Λ(3−s)
Λ(s)=(=(48s/2ΓC(s+1)L(s)(0.333−0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.333−0.942i
|
Analytic conductor: |
1.30790 |
Root analytic conductor: |
1.14363 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1), 0.333−0.942i)
|
Particular Values
L(23) |
≈ |
0.867701+0.613557i |
L(21) |
≈ |
0.867701+0.613557i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1−2.82i)T |
good | 5 | 1−5.65iT−25T2 |
| 7 | 1−6T+49T2 |
| 11 | 1+5.65iT−121T2 |
| 13 | 1−10T+169T2 |
| 17 | 1+22.6iT−289T2 |
| 19 | 1+2T+361T2 |
| 23 | 1−11.3iT−529T2 |
| 29 | 1−16.9iT−841T2 |
| 31 | 1−22T+961T2 |
| 37 | 1+6T+1.36e3T2 |
| 41 | 1−33.9iT−1.68e3T2 |
| 43 | 1+82T+1.84e3T2 |
| 47 | 1+67.8iT−2.20e3T2 |
| 53 | 1+62.2iT−2.80e3T2 |
| 59 | 1+73.5iT−3.48e3T2 |
| 61 | 1+86T+3.72e3T2 |
| 67 | 1+2T+4.48e3T2 |
| 71 | 1−124.iT−5.04e3T2 |
| 73 | 1−82T+5.32e3T2 |
| 79 | 1+10T+6.24e3T2 |
| 83 | 1−73.5iT−6.88e3T2 |
| 89 | 1+33.9iT−7.92e3T2 |
| 97 | 1+94T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.57043223853227462553880449452, −14.63570113284640684849674349504, −13.74779223154144646161891469990, −11.59147277940091212263005169755, −11.06628828728236644478383214993, −9.903901932416096870875403707062, −8.409602321260687544304099349977, −6.66243153714466825535656970955, −5.10001899190853530745711742341, −3.29890576054193911342403457106,
1.51516477393485154652426285439, 4.69649591590057934138421818576, 6.15665602481661924731916389292, 7.898390187659691057364673114554, 8.733397303057901341913019031213, 10.69952286346587240119431300380, 11.97297937000266713434486219270, 12.79875184868878539502629179602, 13.80983076217042636039033038115, 15.18205616010965058745776826752