L(s) = 1 | + (0.416 + 1.35i)2-s + (−1.43 + 0.966i)3-s + (−1.65 + 1.12i)4-s + (1.57 − 1.57i)5-s + (−1.90 − 1.54i)6-s + 2.24·7-s + (−2.20 − 1.76i)8-s + (1.13 − 2.77i)9-s + (2.77 + 1.47i)10-s + (−1.13 − 1.13i)11-s + (1.29 − 3.21i)12-s + (−3.24 + 3.24i)13-s + (0.935 + 3.04i)14-s + (−0.739 + 3.77i)15-s + (1.47 − 3.71i)16-s − 1.66i·17-s + ⋯ |
L(s) = 1 | + (0.294 + 0.955i)2-s + (−0.829 + 0.558i)3-s + (−0.826 + 0.562i)4-s + (0.702 − 0.702i)5-s + (−0.777 − 0.628i)6-s + 0.850·7-s + (−0.780 − 0.624i)8-s + (0.377 − 0.926i)9-s + (0.878 + 0.465i)10-s + (−0.341 − 0.341i)11-s + (0.372 − 0.928i)12-s + (−0.901 + 0.901i)13-s + (0.250 + 0.812i)14-s + (−0.191 + 0.975i)15-s + (0.367 − 0.929i)16-s − 0.403i·17-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.176−0.984i)Λ(2−s)
Λ(s)=(=(48s/2ΓC(s+1/2)L(s)(0.176−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.176−0.984i
|
Analytic conductor: |
0.383281 |
Root analytic conductor: |
0.619097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1/2), 0.176−0.984i)
|
Particular Values
L(1) |
≈ |
0.599699+0.501865i |
L(21) |
≈ |
0.599699+0.501865i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.416−1.35i)T |
| 3 | 1+(1.43−0.966i)T |
good | 5 | 1+(−1.57+1.57i)T−5iT2 |
| 7 | 1−2.24T+7T2 |
| 11 | 1+(1.13+1.13i)T+11iT2 |
| 13 | 1+(3.24−3.24i)T−13iT2 |
| 17 | 1+1.66iT−17T2 |
| 19 | 1+(3.77+3.77i)T+19iT2 |
| 23 | 1−2.26iT−23T2 |
| 29 | 1+(−3.23−3.23i)T+29iT2 |
| 31 | 1+1.30iT−31T2 |
| 37 | 1+(−2.30−2.30i)T+37iT2 |
| 41 | 1+10.2T+41T2 |
| 43 | 1+(−3.77+3.77i)T−43iT2 |
| 47 | 1−3.74T+47T2 |
| 53 | 1+(0.972−0.972i)T−53iT2 |
| 59 | 1+(3.88+3.88i)T+59iT2 |
| 61 | 1+(−4.19+4.19i)T−61iT2 |
| 67 | 1+(−8.02−8.02i)T+67iT2 |
| 71 | 1−11.0iT−71T2 |
| 73 | 1−6.38iT−73T2 |
| 79 | 1+2.69iT−79T2 |
| 83 | 1+(2.61−2.61i)T−83iT2 |
| 89 | 1−7.35T+89T2 |
| 97 | 1+5.67T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.06076839313560804303343518104, −14.97890021226482603588154770718, −13.85157533333164765927770932037, −12.64102932762574931537437456828, −11.42234074808702762056818484713, −9.752725871091366094722358297328, −8.681104814178847815338033007124, −6.89700492669798142989768056944, −5.39287300666777092378821769418, −4.60154615981983080022896872675,
2.19759953500604809690517725123, 4.86923829016358286536353615561, 6.16292571127716224411723999073, 8.008315207075058814838626075355, 10.16134878515106964803907815814, 10.68776409511226974382761045146, 12.01781200717581045087508472205, 12.89197755385284485518647476138, 14.10739171418719838041759868407, 15.03107225786769395318045495470