L(s) = 1 | + (−1.39 − 0.204i)2-s + (−0.814 + 1.52i)3-s + (1.91 + 0.573i)4-s + (2.08 + 2.08i)5-s + (1.45 − 1.97i)6-s − 1.14·7-s + (−2.56 − 1.19i)8-s + (−1.67 − 2.48i)9-s + (−2.48 − 3.34i)10-s + (1.67 − 1.67i)11-s + (−2.43 + 2.46i)12-s + (0.146 + 0.146i)13-s + (1.60 + 0.234i)14-s + (−4.88 + 1.48i)15-s + (3.34 + 2.19i)16-s − 5.59i·17-s + ⋯ |
L(s) = 1 | + (−0.989 − 0.144i)2-s + (−0.470 + 0.882i)3-s + (0.958 + 0.286i)4-s + (0.931 + 0.931i)5-s + (0.592 − 0.805i)6-s − 0.433·7-s + (−0.906 − 0.422i)8-s + (−0.558 − 0.829i)9-s + (−0.787 − 1.05i)10-s + (0.504 − 0.504i)11-s + (−0.703 + 0.710i)12-s + (0.0405 + 0.0405i)13-s + (0.428 + 0.0627i)14-s + (−1.26 + 0.384i)15-s + (0.835 + 0.549i)16-s − 1.35i·17-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.627−0.778i)Λ(2−s)
Λ(s)=(=(48s/2ΓC(s+1/2)L(s)(0.627−0.778i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.627−0.778i
|
Analytic conductor: |
0.383281 |
Root analytic conductor: |
0.619097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :1/2), 0.627−0.778i)
|
Particular Values
L(1) |
≈ |
0.489378+0.234233i |
L(21) |
≈ |
0.489378+0.234233i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39+0.204i)T |
| 3 | 1+(0.814−1.52i)T |
good | 5 | 1+(−2.08−2.08i)T+5iT2 |
| 7 | 1+1.14T+7T2 |
| 11 | 1+(−1.67+1.67i)T−11iT2 |
| 13 | 1+(−0.146−0.146i)T+13iT2 |
| 17 | 1+5.59iT−17T2 |
| 19 | 1+(−1.48+1.48i)T−19iT2 |
| 23 | 1−3.34iT−23T2 |
| 29 | 1+(3.51−3.51i)T−29iT2 |
| 31 | 1+5.83iT−31T2 |
| 37 | 1+(4.83−4.83i)T−37iT2 |
| 41 | 1−0.610T+41T2 |
| 43 | 1+(1.48+1.48i)T+43iT2 |
| 47 | 1−6.41T+47T2 |
| 53 | 1+(−0.164−0.164i)T+53iT2 |
| 59 | 1+(9.05−9.05i)T−59iT2 |
| 61 | 1+(−4.53−4.53i)T+61iT2 |
| 67 | 1+(0.635−0.635i)T−67iT2 |
| 71 | 1+6.90iT−71T2 |
| 73 | 1+7.07iT−73T2 |
| 79 | 1−9.83iT−79T2 |
| 83 | 1+(8.09+8.09i)T+83iT2 |
| 89 | 1−0.490T+89T2 |
| 97 | 1−12.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.11857758571428158175444325836, −15.04570204789720383423722336662, −13.76223171002311163171837455596, −11.80782650961055644880870632247, −10.89996512231204696049612845669, −9.839330008068927701384528138533, −9.141657938539346332277417531504, −6.99389724778086933820593516998, −5.83526797377675345309218897203, −3.10481947319434072200526019304,
1.69578359853725675531896880474, 5.63088384160470586525400218939, 6.69955058569404092588748504954, 8.235920566746012977433715157663, 9.404737451782279877588433927233, 10.63361851716249816660754198814, 12.17940975584803982055138831264, 12.93268888283903553826811291185, 14.38784783441989261318263004208, 16.04152980899198313282517734703