L(s) = 1 | + (−1.39 − 0.204i)2-s + (−0.814 + 1.52i)3-s + (1.91 + 0.573i)4-s + (2.08 + 2.08i)5-s + (1.45 − 1.97i)6-s − 1.14·7-s + (−2.56 − 1.19i)8-s + (−1.67 − 2.48i)9-s + (−2.48 − 3.34i)10-s + (1.67 − 1.67i)11-s + (−2.43 + 2.46i)12-s + (0.146 + 0.146i)13-s + (1.60 + 0.234i)14-s + (−4.88 + 1.48i)15-s + (3.34 + 2.19i)16-s − 5.59i·17-s + ⋯ |
L(s) = 1 | + (−0.989 − 0.144i)2-s + (−0.470 + 0.882i)3-s + (0.958 + 0.286i)4-s + (0.931 + 0.931i)5-s + (0.592 − 0.805i)6-s − 0.433·7-s + (−0.906 − 0.422i)8-s + (−0.558 − 0.829i)9-s + (−0.787 − 1.05i)10-s + (0.504 − 0.504i)11-s + (−0.703 + 0.710i)12-s + (0.0405 + 0.0405i)13-s + (0.428 + 0.0627i)14-s + (−1.26 + 0.384i)15-s + (0.835 + 0.549i)16-s − 1.35i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.627 - 0.778i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.627 - 0.778i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.489378 + 0.234233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.489378 + 0.234233i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.204i)T \) |
| 3 | \( 1 + (0.814 - 1.52i)T \) |
good | 5 | \( 1 + (-2.08 - 2.08i)T + 5iT^{2} \) |
| 7 | \( 1 + 1.14T + 7T^{2} \) |
| 11 | \( 1 + (-1.67 + 1.67i)T - 11iT^{2} \) |
| 13 | \( 1 + (-0.146 - 0.146i)T + 13iT^{2} \) |
| 17 | \( 1 + 5.59iT - 17T^{2} \) |
| 19 | \( 1 + (-1.48 + 1.48i)T - 19iT^{2} \) |
| 23 | \( 1 - 3.34iT - 23T^{2} \) |
| 29 | \( 1 + (3.51 - 3.51i)T - 29iT^{2} \) |
| 31 | \( 1 + 5.83iT - 31T^{2} \) |
| 37 | \( 1 + (4.83 - 4.83i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.610T + 41T^{2} \) |
| 43 | \( 1 + (1.48 + 1.48i)T + 43iT^{2} \) |
| 47 | \( 1 - 6.41T + 47T^{2} \) |
| 53 | \( 1 + (-0.164 - 0.164i)T + 53iT^{2} \) |
| 59 | \( 1 + (9.05 - 9.05i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4.53 - 4.53i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.635 - 0.635i)T - 67iT^{2} \) |
| 71 | \( 1 + 6.90iT - 71T^{2} \) |
| 73 | \( 1 + 7.07iT - 73T^{2} \) |
| 79 | \( 1 - 9.83iT - 79T^{2} \) |
| 83 | \( 1 + (8.09 + 8.09i)T + 83iT^{2} \) |
| 89 | \( 1 - 0.490T + 89T^{2} \) |
| 97 | \( 1 - 12.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.11857758571428158175444325836, −15.04570204789720383423722336662, −13.76223171002311163171837455596, −11.80782650961055644880870632247, −10.89996512231204696049612845669, −9.839330008068927701384528138533, −9.141657938539346332277417531504, −6.99389724778086933820593516998, −5.83526797377675345309218897203, −3.10481947319434072200526019304,
1.69578359853725675531896880474, 5.63088384160470586525400218939, 6.69955058569404092588748504954, 8.235920566746012977433715157663, 9.404737451782279877588433927233, 10.63361851716249816660754198814, 12.17940975584803982055138831264, 12.93268888283903553826811291185, 14.38784783441989261318263004208, 16.04152980899198313282517734703