L(s) = 1 | − 1.69·2-s − 3-s + 0.868·4-s + 3.51·5-s + 1.69·6-s − 7-s + 1.91·8-s + 9-s − 5.94·10-s − 1.74·11-s − 0.868·12-s + 6.33·13-s + 1.69·14-s − 3.51·15-s − 4.98·16-s − 5.94·17-s − 1.69·18-s + 1.74·19-s + 3.04·20-s + 21-s + 2.95·22-s + 23-s − 1.91·24-s + 7.33·25-s − 10.7·26-s − 27-s − 0.868·28-s + ⋯ |
L(s) = 1 | − 1.19·2-s − 0.577·3-s + 0.434·4-s + 1.57·5-s + 0.691·6-s − 0.377·7-s + 0.677·8-s + 0.333·9-s − 1.88·10-s − 0.525·11-s − 0.250·12-s + 1.75·13-s + 0.452·14-s − 0.906·15-s − 1.24·16-s − 1.44·17-s − 0.399·18-s + 0.399·19-s + 0.681·20-s + 0.218·21-s + 0.629·22-s + 0.208·23-s − 0.391·24-s + 1.46·25-s − 2.10·26-s − 0.192·27-s − 0.164·28-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7919422528 |
L(21) |
≈ |
0.7919422528 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1+T |
| 23 | 1−T |
good | 2 | 1+1.69T+2T2 |
| 5 | 1−3.51T+5T2 |
| 11 | 1+1.74T+11T2 |
| 13 | 1−6.33T+13T2 |
| 17 | 1+5.94T+17T2 |
| 19 | 1−1.74T+19T2 |
| 29 | 1+5.68T+29T2 |
| 31 | 1−7.94T+31T2 |
| 37 | 1−1.53T+37T2 |
| 41 | 1−12.1T+41T2 |
| 43 | 1−6.43T+43T2 |
| 47 | 1−3.59T+47T2 |
| 53 | 1−12.9T+53T2 |
| 59 | 1+8.69T+59T2 |
| 61 | 1−8.47T+61T2 |
| 67 | 1+4.46T+67T2 |
| 71 | 1+13.4T+71T2 |
| 73 | 1−4.29T+73T2 |
| 79 | 1+7.42T+79T2 |
| 83 | 1+7.75T+83T2 |
| 89 | 1−4.18T+89T2 |
| 97 | 1−5.53T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71467008332142268420101746969, −10.06522826336291864322771359771, −9.183795088291003891715773775501, −8.697698004795462907973006810710, −7.37047365136649322702300170112, −6.30731291380189075104245450433, −5.70672545216908292895950509535, −4.33552640817428854407863321065, −2.36780115030343750314389151899, −1.07446734187228023635943245477,
1.07446734187228023635943245477, 2.36780115030343750314389151899, 4.33552640817428854407863321065, 5.70672545216908292895950509535, 6.30731291380189075104245450433, 7.37047365136649322702300170112, 8.697698004795462907973006810710, 9.183795088291003891715773775501, 10.06522826336291864322771359771, 10.71467008332142268420101746969