L(s) = 1 | + (0.467 − 1.35i)2-s + (−0.458 − 0.888i)3-s + (−0.0329 − 0.0259i)4-s + (−3.87 + 0.369i)5-s + (−1.41 + 0.203i)6-s + (−0.818 + 2.51i)7-s + (2.35 − 1.51i)8-s + (−0.580 + 0.814i)9-s + (−1.31 + 5.40i)10-s + (−2.90 + 1.00i)11-s + (−0.00793 + 0.0411i)12-s + (1.82 + 6.21i)13-s + (3.01 + 2.28i)14-s + (2.10 + 3.27i)15-s + (−0.962 − 3.96i)16-s + (−5.39 − 2.15i)17-s + ⋯ |
L(s) = 1 | + (0.330 − 0.954i)2-s + (−0.264 − 0.513i)3-s + (−0.0164 − 0.0129i)4-s + (−1.73 + 0.165i)5-s + (−0.577 + 0.0830i)6-s + (−0.309 + 0.950i)7-s + (0.832 − 0.534i)8-s + (−0.193 + 0.271i)9-s + (−0.414 + 1.70i)10-s + (−0.876 + 0.303i)11-s + (−0.00229 + 0.0118i)12-s + (0.505 + 1.72i)13-s + (0.805 + 0.609i)14-s + (0.543 + 0.845i)15-s + (−0.240 − 0.991i)16-s + (−1.30 − 0.523i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.481−0.876i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.481−0.876i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.481−0.876i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.481−0.876i)
|
Particular Values
L(1) |
≈ |
0.518750+0.306706i |
L(21) |
≈ |
0.518750+0.306706i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.458+0.888i)T |
| 7 | 1+(0.818−2.51i)T |
| 23 | 1+(−1.31−4.61i)T |
good | 2 | 1+(−0.467+1.35i)T+(−1.57−1.23i)T2 |
| 5 | 1+(3.87−0.369i)T+(4.90−0.946i)T2 |
| 11 | 1+(2.90−1.00i)T+(8.64−6.79i)T2 |
| 13 | 1+(−1.82−6.21i)T+(−10.9+7.02i)T2 |
| 17 | 1+(5.39+2.15i)T+(12.3+11.7i)T2 |
| 19 | 1+(−2.04+0.819i)T+(13.7−13.1i)T2 |
| 29 | 1+(−0.917−6.38i)T+(−27.8+8.17i)T2 |
| 31 | 1+(9.29−0.442i)T+(30.8−2.94i)T2 |
| 37 | 1+(5.57+3.96i)T+(12.1+34.9i)T2 |
| 41 | 1+(−0.0145−0.00663i)T+(26.8+30.9i)T2 |
| 43 | 1+(−1.64+2.56i)T+(−17.8−39.1i)T2 |
| 47 | 1+(3.20−1.85i)T+(23.5−40.7i)T2 |
| 53 | 1+(1.78+1.87i)T+(−2.52+52.9i)T2 |
| 59 | 1+(0.821+0.199i)T+(52.4+27.0i)T2 |
| 61 | 1+(−6.26−3.23i)T+(35.3+49.6i)T2 |
| 67 | 1+(−0.235−1.22i)T+(−62.2+24.9i)T2 |
| 71 | 1+(−1.17−1.35i)T+(−10.1+70.2i)T2 |
| 73 | 1+(1.50−1.91i)T+(−17.2−70.9i)T2 |
| 79 | 1+(10.5−11.0i)T+(−3.75−78.9i)T2 |
| 83 | 1+(−0.229−0.502i)T+(−54.3+62.7i)T2 |
| 89 | 1+(0.376−7.90i)T+(−88.5−8.45i)T2 |
| 97 | 1+(1.60−3.50i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27195748759274903425823873486, −10.94002967478718596286700715042, −9.327487725060606333788088149163, −8.475665811825993517921143534867, −7.15818051612462505995352100283, −6.99912825112562251972599961193, −5.17182625781909227665028431960, −4.10456371122198942512385964960, −3.12907083416560823447975912529, −1.93919564458838263201491268173,
0.32699724796012134577727293530, 3.27391597963289787878958312810, 4.23319671687445051823193336827, 5.08362534715877011594277169351, 6.19172359162595274456886667906, 7.25543636562923207489975371948, 7.929211134793409495910474869372, 8.553761648413202509494115913335, 10.35019817365535013771588237105, 10.78860894493311386193142177005