Properties

Label 2-4896-1.1-c1-0-21
Degree $2$
Conductor $4896$
Sign $1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.90·5-s − 2.28·7-s + 2.68·11-s − 4.18·13-s − 17-s − 0.689·19-s + 3.39·23-s − 1.38·25-s + 5.86·29-s + 7.86·31-s − 4.34·35-s − 5.86·37-s − 2.61·41-s + 2.88·43-s + 3.80·47-s − 1.77·49-s + 0.423·53-s + 5.11·55-s + 3.57·59-s + 3.63·61-s − 7.96·65-s + 2.64·67-s + 12.4·71-s + 8.14·73-s − 6.14·77-s + 10.0·79-s − 2.57·83-s + ⋯
L(s)  = 1  + 0.850·5-s − 0.864·7-s + 0.810·11-s − 1.16·13-s − 0.242·17-s − 0.158·19-s + 0.708·23-s − 0.277·25-s + 1.08·29-s + 1.41·31-s − 0.734·35-s − 0.963·37-s − 0.407·41-s + 0.440·43-s + 0.554·47-s − 0.253·49-s + 0.0581·53-s + 0.689·55-s + 0.465·59-s + 0.465·61-s − 0.987·65-s + 0.323·67-s + 1.47·71-s + 0.953·73-s − 0.700·77-s + 1.13·79-s − 0.282·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.977024796\)
\(L(\frac12)\) \(\approx\) \(1.977024796\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 1.90T + 5T^{2} \)
7 \( 1 + 2.28T + 7T^{2} \)
11 \( 1 - 2.68T + 11T^{2} \)
13 \( 1 + 4.18T + 13T^{2} \)
19 \( 1 + 0.689T + 19T^{2} \)
23 \( 1 - 3.39T + 23T^{2} \)
29 \( 1 - 5.86T + 29T^{2} \)
31 \( 1 - 7.86T + 31T^{2} \)
37 \( 1 + 5.86T + 37T^{2} \)
41 \( 1 + 2.61T + 41T^{2} \)
43 \( 1 - 2.88T + 43T^{2} \)
47 \( 1 - 3.80T + 47T^{2} \)
53 \( 1 - 0.423T + 53T^{2} \)
59 \( 1 - 3.57T + 59T^{2} \)
61 \( 1 - 3.63T + 61T^{2} \)
67 \( 1 - 2.64T + 67T^{2} \)
71 \( 1 - 12.4T + 71T^{2} \)
73 \( 1 - 8.14T + 73T^{2} \)
79 \( 1 - 10.0T + 79T^{2} \)
83 \( 1 + 2.57T + 83T^{2} \)
89 \( 1 + 7.37T + 89T^{2} \)
97 \( 1 - 4.02T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.401830996302521599060292807745, −7.38961492541064744746868010421, −6.60306845861505100876930847200, −6.34434190361102115135175896451, −5.32274135209037474489527326729, −4.66622988943898236861887273048, −3.67527800322157614430546220648, −2.77215785680720940908655419730, −2.03330794088023983853831735391, −0.76414961271303616860381933082, 0.76414961271303616860381933082, 2.03330794088023983853831735391, 2.77215785680720940908655419730, 3.67527800322157614430546220648, 4.66622988943898236861887273048, 5.32274135209037474489527326729, 6.34434190361102115135175896451, 6.60306845861505100876930847200, 7.38961492541064744746868010421, 8.401830996302521599060292807745

Graph of the $Z$-function along the critical line