L(s) = 1 | + 1.90·5-s − 2.28·7-s + 2.68·11-s − 4.18·13-s − 17-s − 0.689·19-s + 3.39·23-s − 1.38·25-s + 5.86·29-s + 7.86·31-s − 4.34·35-s − 5.86·37-s − 2.61·41-s + 2.88·43-s + 3.80·47-s − 1.77·49-s + 0.423·53-s + 5.11·55-s + 3.57·59-s + 3.63·61-s − 7.96·65-s + 2.64·67-s + 12.4·71-s + 8.14·73-s − 6.14·77-s + 10.0·79-s − 2.57·83-s + ⋯ |
L(s) = 1 | + 0.850·5-s − 0.864·7-s + 0.810·11-s − 1.16·13-s − 0.242·17-s − 0.158·19-s + 0.708·23-s − 0.277·25-s + 1.08·29-s + 1.41·31-s − 0.734·35-s − 0.963·37-s − 0.407·41-s + 0.440·43-s + 0.554·47-s − 0.253·49-s + 0.0581·53-s + 0.689·55-s + 0.465·59-s + 0.465·61-s − 0.987·65-s + 0.323·67-s + 1.47·71-s + 0.953·73-s − 0.700·77-s + 1.13·79-s − 0.282·83-s + ⋯ |
Λ(s)=(=(4896s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4896s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.977024796 |
L(21) |
≈ |
1.977024796 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+T |
good | 5 | 1−1.90T+5T2 |
| 7 | 1+2.28T+7T2 |
| 11 | 1−2.68T+11T2 |
| 13 | 1+4.18T+13T2 |
| 19 | 1+0.689T+19T2 |
| 23 | 1−3.39T+23T2 |
| 29 | 1−5.86T+29T2 |
| 31 | 1−7.86T+31T2 |
| 37 | 1+5.86T+37T2 |
| 41 | 1+2.61T+41T2 |
| 43 | 1−2.88T+43T2 |
| 47 | 1−3.80T+47T2 |
| 53 | 1−0.423T+53T2 |
| 59 | 1−3.57T+59T2 |
| 61 | 1−3.63T+61T2 |
| 67 | 1−2.64T+67T2 |
| 71 | 1−12.4T+71T2 |
| 73 | 1−8.14T+73T2 |
| 79 | 1−10.0T+79T2 |
| 83 | 1+2.57T+83T2 |
| 89 | 1+7.37T+89T2 |
| 97 | 1−4.02T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.401830996302521599060292807745, −7.38961492541064744746868010421, −6.60306845861505100876930847200, −6.34434190361102115135175896451, −5.32274135209037474489527326729, −4.66622988943898236861887273048, −3.67527800322157614430546220648, −2.77215785680720940908655419730, −2.03330794088023983853831735391, −0.76414961271303616860381933082,
0.76414961271303616860381933082, 2.03330794088023983853831735391, 2.77215785680720940908655419730, 3.67527800322157614430546220648, 4.66622988943898236861887273048, 5.32274135209037474489527326729, 6.34434190361102115135175896451, 6.60306845861505100876930847200, 7.38961492541064744746868010421, 8.401830996302521599060292807745