L(s) = 1 | + 1.27·5-s − 1.11·7-s + 5.36·11-s + 0.160·13-s + 17-s + 7.36·19-s − 3.92·23-s − 3.38·25-s + 5.06·29-s − 3.06·31-s − 1.41·35-s + 5.06·37-s + 8.01·41-s + 1.18·43-s + 2.54·47-s − 5.76·49-s − 10.1·53-s + 6.81·55-s + 6.17·59-s − 10.7·61-s + 0.204·65-s + 15.8·67-s + 0.845·71-s − 3.95·73-s − 5.95·77-s + 2.56·79-s + 0.222·83-s + ⋯ |
L(s) = 1 | + 0.568·5-s − 0.419·7-s + 1.61·11-s + 0.0445·13-s + 0.242·17-s + 1.68·19-s − 0.819·23-s − 0.676·25-s + 0.940·29-s − 0.550·31-s − 0.238·35-s + 0.833·37-s + 1.25·41-s + 0.180·43-s + 0.370·47-s − 0.823·49-s − 1.39·53-s + 0.919·55-s + 0.804·59-s − 1.37·61-s + 0.0253·65-s + 1.93·67-s + 0.100·71-s − 0.463·73-s − 0.678·77-s + 0.288·79-s + 0.0243·83-s + ⋯ |
Λ(s)=(=(4896s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4896s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.477280149 |
L(21) |
≈ |
2.477280149 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1−T |
good | 5 | 1−1.27T+5T2 |
| 7 | 1+1.11T+7T2 |
| 11 | 1−5.36T+11T2 |
| 13 | 1−0.160T+13T2 |
| 19 | 1−7.36T+19T2 |
| 23 | 1+3.92T+23T2 |
| 29 | 1−5.06T+29T2 |
| 31 | 1+3.06T+31T2 |
| 37 | 1−5.06T+37T2 |
| 41 | 1−8.01T+41T2 |
| 43 | 1−1.18T+43T2 |
| 47 | 1−2.54T+47T2 |
| 53 | 1+10.1T+53T2 |
| 59 | 1−6.17T+59T2 |
| 61 | 1+10.7T+61T2 |
| 67 | 1−15.8T+67T2 |
| 71 | 1−0.845T+71T2 |
| 73 | 1+3.95T+73T2 |
| 79 | 1−2.56T+79T2 |
| 83 | 1−0.222T+83T2 |
| 89 | 1+8.72T+89T2 |
| 97 | 1−1.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.224498308591763932454799355142, −7.52853103985785809397882221018, −6.70494270583237950823017541355, −6.10386138821250588935781384994, −5.53189169470535493815092562702, −4.47487361253582653359916507610, −3.72204022773422395990315327807, −2.93875327930849934216406510843, −1.80123153949319324885959967794, −0.918510847933424602927354754692,
0.918510847933424602927354754692, 1.80123153949319324885959967794, 2.93875327930849934216406510843, 3.72204022773422395990315327807, 4.47487361253582653359916507610, 5.53189169470535493815092562702, 6.10386138821250588935781384994, 6.70494270583237950823017541355, 7.52853103985785809397882221018, 8.224498308591763932454799355142