Properties

Label 2-4896-1.1-c1-0-32
Degree $2$
Conductor $4896$
Sign $1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.37·5-s + 2·7-s − 2.37·11-s − 0.372·13-s + 17-s + 6.37·19-s + 4.37·23-s + 0.627·25-s − 4.74·29-s − 2·31-s + 4.74·35-s + 4·37-s − 3.62·41-s + 11.1·43-s + 4·47-s − 3·49-s − 6.74·53-s − 5.62·55-s + 0.744·59-s + 8.74·61-s − 0.883·65-s + 4·67-s + 1.25·71-s + 14.7·73-s − 4.74·77-s − 2·79-s + 12·83-s + ⋯
L(s)  = 1  + 1.06·5-s + 0.755·7-s − 0.715·11-s − 0.103·13-s + 0.242·17-s + 1.46·19-s + 0.911·23-s + 0.125·25-s − 0.881·29-s − 0.359·31-s + 0.801·35-s + 0.657·37-s − 0.566·41-s + 1.69·43-s + 0.583·47-s − 0.428·49-s − 0.926·53-s − 0.758·55-s + 0.0969·59-s + 1.11·61-s − 0.109·65-s + 0.488·67-s + 0.148·71-s + 1.72·73-s − 0.540·77-s − 0.225·79-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.754387199\)
\(L(\frac12)\) \(\approx\) \(2.754387199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 2.37T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 2.37T + 11T^{2} \)
13 \( 1 + 0.372T + 13T^{2} \)
19 \( 1 - 6.37T + 19T^{2} \)
23 \( 1 - 4.37T + 23T^{2} \)
29 \( 1 + 4.74T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + 3.62T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 + 6.74T + 53T^{2} \)
59 \( 1 - 0.744T + 59T^{2} \)
61 \( 1 - 8.74T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 1.25T + 71T^{2} \)
73 \( 1 - 14.7T + 73T^{2} \)
79 \( 1 + 2T + 79T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.117592689300812357640999148276, −7.62055256052759117710335953694, −6.88560652284055589642916146169, −5.86984933770762510253291470084, −5.36648764525211078665313450497, −4.83882275063491798827251642425, −3.67927091955995892445940012300, −2.71610556825917031707046247163, −1.93266109125584714577750789328, −0.954320009094335107604431114378, 0.954320009094335107604431114378, 1.93266109125584714577750789328, 2.71610556825917031707046247163, 3.67927091955995892445940012300, 4.83882275063491798827251642425, 5.36648764525211078665313450497, 5.86984933770762510253291470084, 6.88560652284055589642916146169, 7.62055256052759117710335953694, 8.117592689300812357640999148276

Graph of the $Z$-function along the critical line