Properties

Label 2-4896-1.1-c1-0-38
Degree $2$
Conductor $4896$
Sign $1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.22·5-s + 4.88·7-s + 5.50·11-s − 4.95·13-s + 17-s − 1.70·19-s + 0.614·23-s − 3.50·25-s + 8.17·29-s + 4.88·31-s + 5.98·35-s + 7.27·37-s − 6.50·41-s + 7.68·43-s − 13.1·47-s + 16.9·49-s − 9.45·53-s + 6.73·55-s + 2.56·59-s + 9.72·61-s − 6.05·65-s + 5.98·67-s − 2.70·71-s + 6·73-s + 26.9·77-s − 6.11·79-s − 2.56·83-s + ⋯
L(s)  = 1  + 0.547·5-s + 1.84·7-s + 1.65·11-s − 1.37·13-s + 0.242·17-s − 0.391·19-s + 0.128·23-s − 0.700·25-s + 1.51·29-s + 0.878·31-s + 1.01·35-s + 1.19·37-s − 1.01·41-s + 1.17·43-s − 1.92·47-s + 2.41·49-s − 1.29·53-s + 0.907·55-s + 0.334·59-s + 1.24·61-s − 0.751·65-s + 0.730·67-s − 0.320·71-s + 0.702·73-s + 3.06·77-s − 0.688·79-s − 0.281·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.082069695\)
\(L(\frac12)\) \(\approx\) \(3.082069695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 1.22T + 5T^{2} \)
7 \( 1 - 4.88T + 7T^{2} \)
11 \( 1 - 5.50T + 11T^{2} \)
13 \( 1 + 4.95T + 13T^{2} \)
19 \( 1 + 1.70T + 19T^{2} \)
23 \( 1 - 0.614T + 23T^{2} \)
29 \( 1 - 8.17T + 29T^{2} \)
31 \( 1 - 4.88T + 31T^{2} \)
37 \( 1 - 7.27T + 37T^{2} \)
41 \( 1 + 6.50T + 41T^{2} \)
43 \( 1 - 7.68T + 43T^{2} \)
47 \( 1 + 13.1T + 47T^{2} \)
53 \( 1 + 9.45T + 53T^{2} \)
59 \( 1 - 2.56T + 59T^{2} \)
61 \( 1 - 9.72T + 61T^{2} \)
67 \( 1 - 5.98T + 67T^{2} \)
71 \( 1 + 2.70T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 6.11T + 79T^{2} \)
83 \( 1 + 2.56T + 83T^{2} \)
89 \( 1 - 7.90T + 89T^{2} \)
97 \( 1 + 5.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.212781197347460990873643747028, −7.68248203594612559906523254586, −6.75195677570493690292492333769, −6.18071988717769782685552891187, −5.12064643304895436118150250164, −4.68399968409844911430856790333, −3.96703988555256437580870744282, −2.63805293893139868379622401029, −1.82825355735503630508362639183, −1.06264943983690810650628030253, 1.06264943983690810650628030253, 1.82825355735503630508362639183, 2.63805293893139868379622401029, 3.96703988555256437580870744282, 4.68399968409844911430856790333, 5.12064643304895436118150250164, 6.18071988717769782685552891187, 6.75195677570493690292492333769, 7.68248203594612559906523254586, 8.212781197347460990873643747028

Graph of the $Z$-function along the critical line