L(s) = 1 | + 1.22·5-s + 4.88·7-s + 5.50·11-s − 4.95·13-s + 17-s − 1.70·19-s + 0.614·23-s − 3.50·25-s + 8.17·29-s + 4.88·31-s + 5.98·35-s + 7.27·37-s − 6.50·41-s + 7.68·43-s − 13.1·47-s + 16.9·49-s − 9.45·53-s + 6.73·55-s + 2.56·59-s + 9.72·61-s − 6.05·65-s + 5.98·67-s − 2.70·71-s + 6·73-s + 26.9·77-s − 6.11·79-s − 2.56·83-s + ⋯ |
L(s) = 1 | + 0.547·5-s + 1.84·7-s + 1.65·11-s − 1.37·13-s + 0.242·17-s − 0.391·19-s + 0.128·23-s − 0.700·25-s + 1.51·29-s + 0.878·31-s + 1.01·35-s + 1.19·37-s − 1.01·41-s + 1.17·43-s − 1.92·47-s + 2.41·49-s − 1.29·53-s + 0.907·55-s + 0.334·59-s + 1.24·61-s − 0.751·65-s + 0.730·67-s − 0.320·71-s + 0.702·73-s + 3.06·77-s − 0.688·79-s − 0.281·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.082069695\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.082069695\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 5 | \( 1 - 1.22T + 5T^{2} \) |
| 7 | \( 1 - 4.88T + 7T^{2} \) |
| 11 | \( 1 - 5.50T + 11T^{2} \) |
| 13 | \( 1 + 4.95T + 13T^{2} \) |
| 19 | \( 1 + 1.70T + 19T^{2} \) |
| 23 | \( 1 - 0.614T + 23T^{2} \) |
| 29 | \( 1 - 8.17T + 29T^{2} \) |
| 31 | \( 1 - 4.88T + 31T^{2} \) |
| 37 | \( 1 - 7.27T + 37T^{2} \) |
| 41 | \( 1 + 6.50T + 41T^{2} \) |
| 43 | \( 1 - 7.68T + 43T^{2} \) |
| 47 | \( 1 + 13.1T + 47T^{2} \) |
| 53 | \( 1 + 9.45T + 53T^{2} \) |
| 59 | \( 1 - 2.56T + 59T^{2} \) |
| 61 | \( 1 - 9.72T + 61T^{2} \) |
| 67 | \( 1 - 5.98T + 67T^{2} \) |
| 71 | \( 1 + 2.70T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 + 6.11T + 79T^{2} \) |
| 83 | \( 1 + 2.56T + 83T^{2} \) |
| 89 | \( 1 - 7.90T + 89T^{2} \) |
| 97 | \( 1 + 5.45T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.212781197347460990873643747028, −7.68248203594612559906523254586, −6.75195677570493690292492333769, −6.18071988717769782685552891187, −5.12064643304895436118150250164, −4.68399968409844911430856790333, −3.96703988555256437580870744282, −2.63805293893139868379622401029, −1.82825355735503630508362639183, −1.06264943983690810650628030253,
1.06264943983690810650628030253, 1.82825355735503630508362639183, 2.63805293893139868379622401029, 3.96703988555256437580870744282, 4.68399968409844911430856790333, 5.12064643304895436118150250164, 6.18071988717769782685552891187, 6.75195677570493690292492333769, 7.68248203594612559906523254586, 8.212781197347460990873643747028