L(s) = 1 | + 1.22·5-s + 4.88·7-s + 5.50·11-s − 4.95·13-s + 17-s − 1.70·19-s + 0.614·23-s − 3.50·25-s + 8.17·29-s + 4.88·31-s + 5.98·35-s + 7.27·37-s − 6.50·41-s + 7.68·43-s − 13.1·47-s + 16.9·49-s − 9.45·53-s + 6.73·55-s + 2.56·59-s + 9.72·61-s − 6.05·65-s + 5.98·67-s − 2.70·71-s + 6·73-s + 26.9·77-s − 6.11·79-s − 2.56·83-s + ⋯ |
L(s) = 1 | + 0.547·5-s + 1.84·7-s + 1.65·11-s − 1.37·13-s + 0.242·17-s − 0.391·19-s + 0.128·23-s − 0.700·25-s + 1.51·29-s + 0.878·31-s + 1.01·35-s + 1.19·37-s − 1.01·41-s + 1.17·43-s − 1.92·47-s + 2.41·49-s − 1.29·53-s + 0.907·55-s + 0.334·59-s + 1.24·61-s − 0.751·65-s + 0.730·67-s − 0.320·71-s + 0.702·73-s + 3.06·77-s − 0.688·79-s − 0.281·83-s + ⋯ |
Λ(s)=(=(4896s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4896s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.082069695 |
L(21) |
≈ |
3.082069695 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1−T |
good | 5 | 1−1.22T+5T2 |
| 7 | 1−4.88T+7T2 |
| 11 | 1−5.50T+11T2 |
| 13 | 1+4.95T+13T2 |
| 19 | 1+1.70T+19T2 |
| 23 | 1−0.614T+23T2 |
| 29 | 1−8.17T+29T2 |
| 31 | 1−4.88T+31T2 |
| 37 | 1−7.27T+37T2 |
| 41 | 1+6.50T+41T2 |
| 43 | 1−7.68T+43T2 |
| 47 | 1+13.1T+47T2 |
| 53 | 1+9.45T+53T2 |
| 59 | 1−2.56T+59T2 |
| 61 | 1−9.72T+61T2 |
| 67 | 1−5.98T+67T2 |
| 71 | 1+2.70T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+6.11T+79T2 |
| 83 | 1+2.56T+83T2 |
| 89 | 1−7.90T+89T2 |
| 97 | 1+5.45T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.212781197347460990873643747028, −7.68248203594612559906523254586, −6.75195677570493690292492333769, −6.18071988717769782685552891187, −5.12064643304895436118150250164, −4.68399968409844911430856790333, −3.96703988555256437580870744282, −2.63805293893139868379622401029, −1.82825355735503630508362639183, −1.06264943983690810650628030253,
1.06264943983690810650628030253, 1.82825355735503630508362639183, 2.63805293893139868379622401029, 3.96703988555256437580870744282, 4.68399968409844911430856790333, 5.12064643304895436118150250164, 6.18071988717769782685552891187, 6.75195677570493690292492333769, 7.68248203594612559906523254586, 8.212781197347460990873643747028