Properties

Label 2-4896-1.1-c1-0-52
Degree $2$
Conductor $4896$
Sign $-1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.96·5-s + 4.15·7-s − 3.19·11-s − 5.35·13-s − 17-s + 1.61·19-s + 8.46·23-s + 3.77·25-s + 6.96·29-s + 6.54·31-s − 12.3·35-s − 6.96·37-s − 8.70·41-s + 4.31·43-s − 5.92·47-s + 10.2·49-s − 4.70·53-s + 9.46·55-s + 7.53·59-s − 10.1·61-s + 15.8·65-s − 3.22·67-s − 13.7·71-s + 5.22·73-s − 13.2·77-s − 13.2·79-s + 4.31·83-s + ⋯
L(s)  = 1  − 1.32·5-s + 1.57·7-s − 0.963·11-s − 1.48·13-s − 0.242·17-s + 0.369·19-s + 1.76·23-s + 0.755·25-s + 1.29·29-s + 1.17·31-s − 2.08·35-s − 1.14·37-s − 1.35·41-s + 0.657·43-s − 0.864·47-s + 1.46·49-s − 0.645·53-s + 1.27·55-s + 0.981·59-s − 1.30·61-s + 1.96·65-s − 0.393·67-s − 1.63·71-s + 0.611·73-s − 1.51·77-s − 1.49·79-s + 0.473·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2.96T + 5T^{2} \)
7 \( 1 - 4.15T + 7T^{2} \)
11 \( 1 + 3.19T + 11T^{2} \)
13 \( 1 + 5.35T + 13T^{2} \)
19 \( 1 - 1.61T + 19T^{2} \)
23 \( 1 - 8.46T + 23T^{2} \)
29 \( 1 - 6.96T + 29T^{2} \)
31 \( 1 - 6.54T + 31T^{2} \)
37 \( 1 + 6.96T + 37T^{2} \)
41 \( 1 + 8.70T + 41T^{2} \)
43 \( 1 - 4.31T + 43T^{2} \)
47 \( 1 + 5.92T + 47T^{2} \)
53 \( 1 + 4.70T + 53T^{2} \)
59 \( 1 - 7.53T + 59T^{2} \)
61 \( 1 + 10.1T + 61T^{2} \)
67 \( 1 + 3.22T + 67T^{2} \)
71 \( 1 + 13.7T + 71T^{2} \)
73 \( 1 - 5.22T + 73T^{2} \)
79 \( 1 + 13.2T + 79T^{2} \)
83 \( 1 - 4.31T + 83T^{2} \)
89 \( 1 - 7.27T + 89T^{2} \)
97 \( 1 + 2.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.941809484926371612945198438187, −7.34367487338673502671339679942, −6.78346169909090632775112850447, −5.33481479788559907253714184498, −4.79191300904464210334878864030, −4.51863174312756331143547324655, −3.21730293777465648369628975693, −2.52943585135309431949769048058, −1.27939297748265963050871482163, 0, 1.27939297748265963050871482163, 2.52943585135309431949769048058, 3.21730293777465648369628975693, 4.51863174312756331143547324655, 4.79191300904464210334878864030, 5.33481479788559907253714184498, 6.78346169909090632775112850447, 7.34367487338673502671339679942, 7.941809484926371612945198438187

Graph of the $Z$-function along the critical line