L(s) = 1 | − 2·7-s − 6·13-s + 17-s + 4·19-s + 6·23-s − 5·25-s + 8·29-s + 2·31-s + 12·37-s + 2·41-s − 12·43-s − 4·47-s − 3·49-s + 14·53-s − 12·59-s − 4·61-s − 4·67-s − 6·71-s − 6·73-s − 14·79-s − 12·83-s − 6·89-s + 12·91-s − 10·97-s − 2·101-s + 8·103-s − 16·107-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1.66·13-s + 0.242·17-s + 0.917·19-s + 1.25·23-s − 25-s + 1.48·29-s + 0.359·31-s + 1.97·37-s + 0.312·41-s − 1.82·43-s − 0.583·47-s − 3/7·49-s + 1.92·53-s − 1.56·59-s − 0.512·61-s − 0.488·67-s − 0.712·71-s − 0.702·73-s − 1.57·79-s − 1.31·83-s − 0.635·89-s + 1.25·91-s − 1.01·97-s − 0.199·101-s + 0.788·103-s − 1.54·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 5 | \( 1 + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 6 T + p T^{2} \) |
| 29 | \( 1 - 8 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 12 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 12 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 - 14 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 4 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 14 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.77718952625556122797432773717, −7.20687508770729629161450298415, −6.53969561339537980266253033760, −5.71174706786893053338055753769, −4.92413858868962351564688633033, −4.26944062685429511445546705704, −3.01092071925155918358443492679, −2.72778690415535571819513199305, −1.29080808634123104616625472472, 0,
1.29080808634123104616625472472, 2.72778690415535571819513199305, 3.01092071925155918358443492679, 4.26944062685429511445546705704, 4.92413858868962351564688633033, 5.71174706786893053338055753769, 6.53969561339537980266253033760, 7.20687508770729629161450298415, 7.77718952625556122797432773717