Properties

Label 2-4896-1.1-c1-0-53
Degree $2$
Conductor $4896$
Sign $-1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 6·13-s + 17-s + 4·19-s + 6·23-s − 5·25-s + 8·29-s + 2·31-s + 12·37-s + 2·41-s − 12·43-s − 4·47-s − 3·49-s + 14·53-s − 12·59-s − 4·61-s − 4·67-s − 6·71-s − 6·73-s − 14·79-s − 12·83-s − 6·89-s + 12·91-s − 10·97-s − 2·101-s + 8·103-s − 16·107-s + ⋯
L(s)  = 1  − 0.755·7-s − 1.66·13-s + 0.242·17-s + 0.917·19-s + 1.25·23-s − 25-s + 1.48·29-s + 0.359·31-s + 1.97·37-s + 0.312·41-s − 1.82·43-s − 0.583·47-s − 3/7·49-s + 1.92·53-s − 1.56·59-s − 0.512·61-s − 0.488·67-s − 0.712·71-s − 0.702·73-s − 1.57·79-s − 1.31·83-s − 0.635·89-s + 1.25·91-s − 1.01·97-s − 0.199·101-s + 0.788·103-s − 1.54·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 12 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77718952625556122797432773717, −7.20687508770729629161450298415, −6.53969561339537980266253033760, −5.71174706786893053338055753769, −4.92413858868962351564688633033, −4.26944062685429511445546705704, −3.01092071925155918358443492679, −2.72778690415535571819513199305, −1.29080808634123104616625472472, 0, 1.29080808634123104616625472472, 2.72778690415535571819513199305, 3.01092071925155918358443492679, 4.26944062685429511445546705704, 4.92413858868962351564688633033, 5.71174706786893053338055753769, 6.53969561339537980266253033760, 7.20687508770729629161450298415, 7.77718952625556122797432773717

Graph of the $Z$-function along the critical line