L(s) = 1 | + 22·5-s − 92·13-s − 104·17-s + 359·25-s + 130·29-s + 396·37-s − 472·41-s − 343·49-s − 518·53-s − 468·61-s − 2.02e3·65-s − 1.09e3·73-s − 2.28e3·85-s − 176·89-s + 594·97-s − 598·101-s + 1.46e3·109-s − 1.32e3·113-s + ⋯ |
L(s) = 1 | + 1.96·5-s − 1.96·13-s − 1.48·17-s + 2.87·25-s + 0.832·29-s + 1.75·37-s − 1.79·41-s − 49-s − 1.34·53-s − 0.982·61-s − 3.86·65-s − 1.76·73-s − 2.91·85-s − 0.209·89-s + 0.621·97-s − 0.589·101-s + 1.28·109-s − 1.10·113-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2304s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−22T+p3T2 |
| 7 | 1+p3T2 |
| 11 | 1+p3T2 |
| 13 | 1+92T+p3T2 |
| 17 | 1+104T+p3T2 |
| 19 | 1+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1−130T+p3T2 |
| 31 | 1+p3T2 |
| 37 | 1−396T+p3T2 |
| 41 | 1+472T+p3T2 |
| 43 | 1+p3T2 |
| 47 | 1+p3T2 |
| 53 | 1+518T+p3T2 |
| 59 | 1+p3T2 |
| 61 | 1+468T+p3T2 |
| 67 | 1+p3T2 |
| 71 | 1+p3T2 |
| 73 | 1+1098T+p3T2 |
| 79 | 1+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1+176T+p3T2 |
| 97 | 1−594T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.442721614606649735742770949180, −7.32253373224090007499932330360, −6.56858279412549644069088810088, −6.03891654579303787676946986678, −4.94290952356971411996007797812, −4.67721544481997312806899500589, −2.88205342209647591616129487103, −2.33222271120770206960248713590, −1.49537304557110902716672127340, 0,
1.49537304557110902716672127340, 2.33222271120770206960248713590, 2.88205342209647591616129487103, 4.67721544481997312806899500589, 4.94290952356971411996007797812, 6.03891654579303787676946986678, 6.56858279412549644069088810088, 7.32253373224090007499932330360, 8.442721614606649735742770949180