Properties

Label 2-48e2-1.1-c3-0-112
Degree $2$
Conductor $2304$
Sign $-1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 22·5-s − 92·13-s − 104·17-s + 359·25-s + 130·29-s + 396·37-s − 472·41-s − 343·49-s − 518·53-s − 468·61-s − 2.02e3·65-s − 1.09e3·73-s − 2.28e3·85-s − 176·89-s + 594·97-s − 598·101-s + 1.46e3·109-s − 1.32e3·113-s + ⋯
L(s)  = 1  + 1.96·5-s − 1.96·13-s − 1.48·17-s + 2.87·25-s + 0.832·29-s + 1.75·37-s − 1.79·41-s − 49-s − 1.34·53-s − 0.982·61-s − 3.86·65-s − 1.76·73-s − 2.91·85-s − 0.209·89-s + 0.621·97-s − 0.589·101-s + 1.28·109-s − 1.10·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 22 T + p^{3} T^{2} \)
7 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 + 92 T + p^{3} T^{2} \)
17 \( 1 + 104 T + p^{3} T^{2} \)
19 \( 1 + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 130 T + p^{3} T^{2} \)
31 \( 1 + p^{3} T^{2} \)
37 \( 1 - 396 T + p^{3} T^{2} \)
41 \( 1 + 472 T + p^{3} T^{2} \)
43 \( 1 + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + 518 T + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 468 T + p^{3} T^{2} \)
67 \( 1 + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 + 1098 T + p^{3} T^{2} \)
79 \( 1 + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + 176 T + p^{3} T^{2} \)
97 \( 1 - 594 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.442721614606649735742770949180, −7.32253373224090007499932330360, −6.56858279412549644069088810088, −6.03891654579303787676946986678, −4.94290952356971411996007797812, −4.67721544481997312806899500589, −2.88205342209647591616129487103, −2.33222271120770206960248713590, −1.49537304557110902716672127340, 0, 1.49537304557110902716672127340, 2.33222271120770206960248713590, 2.88205342209647591616129487103, 4.67721544481997312806899500589, 4.94290952356971411996007797812, 6.03891654579303787676946986678, 6.56858279412549644069088810088, 7.32253373224090007499932330360, 8.442721614606649735742770949180

Graph of the $Z$-function along the critical line