L(s) = 1 | + 4·5-s + 92·13-s − 94·17-s − 109·25-s − 284·29-s + 396·37-s − 230·41-s − 343·49-s − 572·53-s − 468·61-s + 368·65-s + 1.09e3·73-s − 376·85-s + 1.67e3·89-s − 594·97-s + 1.94e3·101-s − 1.46e3·109-s − 2.00e3·113-s + ⋯ |
L(s) = 1 | + 0.357·5-s + 1.96·13-s − 1.34·17-s − 0.871·25-s − 1.81·29-s + 1.75·37-s − 0.876·41-s − 49-s − 1.48·53-s − 0.982·61-s + 0.702·65-s + 1.76·73-s − 0.479·85-s + 1.98·89-s − 0.621·97-s + 1.91·101-s − 1.28·109-s − 1.66·113-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2304s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−4T+p3T2 |
| 7 | 1+p3T2 |
| 11 | 1+p3T2 |
| 13 | 1−92T+p3T2 |
| 17 | 1+94T+p3T2 |
| 19 | 1+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1+284T+p3T2 |
| 31 | 1+p3T2 |
| 37 | 1−396T+p3T2 |
| 41 | 1+230T+p3T2 |
| 43 | 1+p3T2 |
| 47 | 1+p3T2 |
| 53 | 1+572T+p3T2 |
| 59 | 1+p3T2 |
| 61 | 1+468T+p3T2 |
| 67 | 1+p3T2 |
| 71 | 1+p3T2 |
| 73 | 1−1098T+p3T2 |
| 79 | 1+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1−1670T+p3T2 |
| 97 | 1+594T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.275820327009108507535643786739, −7.62176511165678453514136771728, −6.36537148568650961056236973393, −6.20429297938648501412898692621, −5.13367420173070648613621483128, −4.11057385268763954228436424500, −3.43583664079371395343193902063, −2.17875190948423196858828206037, −1.35093743101236521253426765698, 0,
1.35093743101236521253426765698, 2.17875190948423196858828206037, 3.43583664079371395343193902063, 4.11057385268763954228436424500, 5.13367420173070648613621483128, 6.20429297938648501412898692621, 6.36537148568650961056236973393, 7.62176511165678453514136771728, 8.275820327009108507535643786739