Properties

Label 2-48e2-1.1-c3-0-99
Degree $2$
Conductor $2304$
Sign $-1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 92·13-s − 94·17-s − 109·25-s − 284·29-s + 396·37-s − 230·41-s − 343·49-s − 572·53-s − 468·61-s + 368·65-s + 1.09e3·73-s − 376·85-s + 1.67e3·89-s − 594·97-s + 1.94e3·101-s − 1.46e3·109-s − 2.00e3·113-s + ⋯
L(s)  = 1  + 0.357·5-s + 1.96·13-s − 1.34·17-s − 0.871·25-s − 1.81·29-s + 1.75·37-s − 0.876·41-s − 49-s − 1.48·53-s − 0.982·61-s + 0.702·65-s + 1.76·73-s − 0.479·85-s + 1.98·89-s − 0.621·97-s + 1.91·101-s − 1.28·109-s − 1.66·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 4 T + p^{3} T^{2} \)
7 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 - 92 T + p^{3} T^{2} \)
17 \( 1 + 94 T + p^{3} T^{2} \)
19 \( 1 + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + 284 T + p^{3} T^{2} \)
31 \( 1 + p^{3} T^{2} \)
37 \( 1 - 396 T + p^{3} T^{2} \)
41 \( 1 + 230 T + p^{3} T^{2} \)
43 \( 1 + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + 572 T + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 468 T + p^{3} T^{2} \)
67 \( 1 + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 - 1098 T + p^{3} T^{2} \)
79 \( 1 + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 - 1670 T + p^{3} T^{2} \)
97 \( 1 + 594 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.275820327009108507535643786739, −7.62176511165678453514136771728, −6.36537148568650961056236973393, −6.20429297938648501412898692621, −5.13367420173070648613621483128, −4.11057385268763954228436424500, −3.43583664079371395343193902063, −2.17875190948423196858828206037, −1.35093743101236521253426765698, 0, 1.35093743101236521253426765698, 2.17875190948423196858828206037, 3.43583664079371395343193902063, 4.11057385268763954228436424500, 5.13367420173070648613621483128, 6.20429297938648501412898692621, 6.36537148568650961056236973393, 7.62176511165678453514136771728, 8.275820327009108507535643786739

Graph of the $Z$-function along the critical line