L(s) = 1 | + 4·5-s + 92·13-s − 94·17-s − 109·25-s − 284·29-s + 396·37-s − 230·41-s − 343·49-s − 572·53-s − 468·61-s + 368·65-s + 1.09e3·73-s − 376·85-s + 1.67e3·89-s − 594·97-s + 1.94e3·101-s − 1.46e3·109-s − 2.00e3·113-s + ⋯ |
L(s) = 1 | + 0.357·5-s + 1.96·13-s − 1.34·17-s − 0.871·25-s − 1.81·29-s + 1.75·37-s − 0.876·41-s − 49-s − 1.48·53-s − 0.982·61-s + 0.702·65-s + 1.76·73-s − 0.479·85-s + 1.98·89-s − 0.621·97-s + 1.91·101-s − 1.28·109-s − 1.66·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 4 T + p^{3} T^{2} \) |
| 7 | \( 1 + p^{3} T^{2} \) |
| 11 | \( 1 + p^{3} T^{2} \) |
| 13 | \( 1 - 92 T + p^{3} T^{2} \) |
| 17 | \( 1 + 94 T + p^{3} T^{2} \) |
| 19 | \( 1 + p^{3} T^{2} \) |
| 23 | \( 1 + p^{3} T^{2} \) |
| 29 | \( 1 + 284 T + p^{3} T^{2} \) |
| 31 | \( 1 + p^{3} T^{2} \) |
| 37 | \( 1 - 396 T + p^{3} T^{2} \) |
| 41 | \( 1 + 230 T + p^{3} T^{2} \) |
| 43 | \( 1 + p^{3} T^{2} \) |
| 47 | \( 1 + p^{3} T^{2} \) |
| 53 | \( 1 + 572 T + p^{3} T^{2} \) |
| 59 | \( 1 + p^{3} T^{2} \) |
| 61 | \( 1 + 468 T + p^{3} T^{2} \) |
| 67 | \( 1 + p^{3} T^{2} \) |
| 71 | \( 1 + p^{3} T^{2} \) |
| 73 | \( 1 - 1098 T + p^{3} T^{2} \) |
| 79 | \( 1 + p^{3} T^{2} \) |
| 83 | \( 1 + p^{3} T^{2} \) |
| 89 | \( 1 - 1670 T + p^{3} T^{2} \) |
| 97 | \( 1 + 594 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.275820327009108507535643786739, −7.62176511165678453514136771728, −6.36537148568650961056236973393, −6.20429297938648501412898692621, −5.13367420173070648613621483128, −4.11057385268763954228436424500, −3.43583664079371395343193902063, −2.17875190948423196858828206037, −1.35093743101236521253426765698, 0,
1.35093743101236521253426765698, 2.17875190948423196858828206037, 3.43583664079371395343193902063, 4.11057385268763954228436424500, 5.13367420173070648613621483128, 6.20429297938648501412898692621, 6.36537148568650961056236973393, 7.62176511165678453514136771728, 8.275820327009108507535643786739