L(s) = 1 | + 2-s + 4-s + 5-s + 8-s − 3·9-s + 10-s + 4·11-s + 6·13-s + 16-s − 2·17-s − 3·18-s + 20-s + 4·22-s + 25-s + 6·26-s + 6·29-s − 8·31-s + 32-s − 2·34-s − 3·36-s − 10·37-s + 40-s − 2·41-s + 4·43-s + 4·44-s − 3·45-s − 8·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.353·8-s − 9-s + 0.316·10-s + 1.20·11-s + 1.66·13-s + 1/4·16-s − 0.485·17-s − 0.707·18-s + 0.223·20-s + 0.852·22-s + 1/5·25-s + 1.17·26-s + 1.11·29-s − 1.43·31-s + 0.176·32-s − 0.342·34-s − 1/2·36-s − 1.64·37-s + 0.158·40-s − 0.312·41-s + 0.609·43-s + 0.603·44-s − 0.447·45-s − 1.16·47-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(490s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.369641784 |
L(21) |
≈ |
2.369641784 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1−T |
| 7 | 1 |
good | 3 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21735898278523397026755152007, −10.27331483782898950038120178987, −8.943481127314352432901190185250, −8.517395214779930601558675802260, −6.94587741637952917868946998696, −6.19981958164339530240516278001, −5.43748531590055688874527891076, −4.08647900838425361258038365025, −3.14888451818473432527395410089, −1.60311130730382042811195419884,
1.60311130730382042811195419884, 3.14888451818473432527395410089, 4.08647900838425361258038365025, 5.43748531590055688874527891076, 6.19981958164339530240516278001, 6.94587741637952917868946998696, 8.517395214779930601558675802260, 8.943481127314352432901190185250, 10.27331483782898950038120178987, 11.21735898278523397026755152007