L(s) = 1 | + 2-s + 2·3-s + 4-s + 5-s + 2·6-s + 8-s + 9-s + 10-s − 4·11-s + 2·12-s + 2·13-s + 2·15-s + 16-s + 8·17-s + 18-s − 6·19-s + 20-s − 4·22-s − 4·23-s + 2·24-s + 25-s + 2·26-s − 4·27-s − 6·29-s + 2·30-s + 4·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s + 0.816·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.577·12-s + 0.554·13-s + 0.516·15-s + 1/4·16-s + 1.94·17-s + 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.852·22-s − 0.834·23-s + 0.408·24-s + 1/5·25-s + 0.392·26-s − 0.769·27-s − 1.11·29-s + 0.365·30-s + 0.718·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(490s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.071649458 |
L(21) |
≈ |
3.071649458 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1−T |
| 7 | 1 |
good | 3 | 1−2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−8T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1+14T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+2T+pT2 |
| 89 | 1−8T+pT2 |
| 97 | 1+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78524842246065370835052081258, −10.18076940563670721337529296568, −9.102066376137223109803910203953, −8.118957846682560780166935032553, −7.54815335398458076593938530060, −6.10181652811109734263548661708, −5.34673915974432534760216274251, −3.93281458879405714793180621994, −2.99518962250547346483426263862, −1.97892037150738648722925117261,
1.97892037150738648722925117261, 2.99518962250547346483426263862, 3.93281458879405714793180621994, 5.34673915974432534760216274251, 6.10181652811109734263548661708, 7.54815335398458076593938530060, 8.118957846682560780166935032553, 9.102066376137223109803910203953, 10.18076940563670721337529296568, 10.78524842246065370835052081258