Properties

Label 2-490-1.1-c3-0-21
Degree $2$
Conductor $490$
Sign $-1$
Analytic cond. $28.9109$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·3-s + 4·4-s − 5·5-s + 8·6-s − 8·8-s − 11·9-s + 10·10-s + 60·11-s − 16·12-s − 38·13-s + 20·15-s + 16·16-s − 42·17-s + 22·18-s + 52·19-s − 20·20-s − 120·22-s + 120·23-s + 32·24-s + 25·25-s + 76·26-s + 152·27-s − 234·29-s − 40·30-s + 304·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.769·3-s + 1/2·4-s − 0.447·5-s + 0.544·6-s − 0.353·8-s − 0.407·9-s + 0.316·10-s + 1.64·11-s − 0.384·12-s − 0.810·13-s + 0.344·15-s + 1/4·16-s − 0.599·17-s + 0.288·18-s + 0.627·19-s − 0.223·20-s − 1.16·22-s + 1.08·23-s + 0.272·24-s + 1/5·25-s + 0.573·26-s + 1.08·27-s − 1.49·29-s − 0.243·30-s + 1.76·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(28.9109\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 490,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 + p T \)
7 \( 1 \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 60 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 - 52 T + p^{3} T^{2} \)
23 \( 1 - 120 T + p^{3} T^{2} \)
29 \( 1 + 234 T + p^{3} T^{2} \)
31 \( 1 - 304 T + p^{3} T^{2} \)
37 \( 1 + 106 T + p^{3} T^{2} \)
41 \( 1 - 54 T + p^{3} T^{2} \)
43 \( 1 + 196 T + p^{3} T^{2} \)
47 \( 1 + 336 T + p^{3} T^{2} \)
53 \( 1 - 438 T + p^{3} T^{2} \)
59 \( 1 - 444 T + p^{3} T^{2} \)
61 \( 1 + 38 T + p^{3} T^{2} \)
67 \( 1 + 988 T + p^{3} T^{2} \)
71 \( 1 + 720 T + p^{3} T^{2} \)
73 \( 1 + 2 p T + p^{3} T^{2} \)
79 \( 1 + 808 T + p^{3} T^{2} \)
83 \( 1 + 612 T + p^{3} T^{2} \)
89 \( 1 + 1146 T + p^{3} T^{2} \)
97 \( 1 - 70 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08166994191718082599212834472, −9.185738291158917633618622049403, −8.466737067958872578142520875842, −7.20212487840482341692703094069, −6.61046836033739617668425968860, −5.51176278702901317192354142325, −4.34036861271575492935150930333, −2.95885373404145523362266096864, −1.27809098940068457354395916273, 0, 1.27809098940068457354395916273, 2.95885373404145523362266096864, 4.34036861271575492935150930333, 5.51176278702901317192354142325, 6.61046836033739617668425968860, 7.20212487840482341692703094069, 8.466737067958872578142520875842, 9.185738291158917633618622049403, 10.08166994191718082599212834472

Graph of the $Z$-function along the critical line