L(s) = 1 | − 2·2-s + 3-s + 4·4-s + 5·5-s − 2·6-s − 8·8-s − 26·9-s − 10·10-s − 2·11-s + 4·12-s + 8·13-s + 5·15-s + 16·16-s + 52·17-s + 52·18-s − 26·19-s + 20·20-s + 4·22-s + 67·23-s − 8·24-s + 25·25-s − 16·26-s − 53·27-s + 69·29-s − 10·30-s + 332·31-s − 32·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.192·3-s + 1/2·4-s + 0.447·5-s − 0.136·6-s − 0.353·8-s − 0.962·9-s − 0.316·10-s − 0.0548·11-s + 0.0962·12-s + 0.170·13-s + 0.0860·15-s + 1/4·16-s + 0.741·17-s + 0.680·18-s − 0.313·19-s + 0.223·20-s + 0.0387·22-s + 0.607·23-s − 0.0680·24-s + 1/5·25-s − 0.120·26-s − 0.377·27-s + 0.441·29-s − 0.0608·30-s + 1.92·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(490s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.490156775 |
L(21) |
≈ |
1.490156775 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+pT |
| 5 | 1−pT |
| 7 | 1 |
good | 3 | 1−T+p3T2 |
| 11 | 1+2T+p3T2 |
| 13 | 1−8T+p3T2 |
| 17 | 1−52T+p3T2 |
| 19 | 1+26T+p3T2 |
| 23 | 1−67T+p3T2 |
| 29 | 1−69T+p3T2 |
| 31 | 1−332T+p3T2 |
| 37 | 1−196T+p3T2 |
| 41 | 1+353T+p3T2 |
| 43 | 1+369T+p3T2 |
| 47 | 1+88T+p3T2 |
| 53 | 1−582T+p3T2 |
| 59 | 1−350T+p3T2 |
| 61 | 1−467T+p3T2 |
| 67 | 1−291T+p3T2 |
| 71 | 1−770T+p3T2 |
| 73 | 1+628T+p3T2 |
| 79 | 1−1170T+p3T2 |
| 83 | 1+525T+p3T2 |
| 89 | 1+pT+p3T2 |
| 97 | 1−290T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31326811407164678881123813400, −9.728138980797757092857073038461, −8.600425776644537930212052514150, −8.195547144602069151204134805798, −6.90660916463151409284539033435, −6.04306578245275794700473369377, −5.00759978637281288340496691006, −3.34471378606230485181948214199, −2.32829999462431807938763059265, −0.841771476100948610717919718941,
0.841771476100948610717919718941, 2.32829999462431807938763059265, 3.34471378606230485181948214199, 5.00759978637281288340496691006, 6.04306578245275794700473369377, 6.90660916463151409284539033435, 8.195547144602069151204134805798, 8.600425776644537930212052514150, 9.728138980797757092857073038461, 10.31326811407164678881123813400