Properties

Label 2-490-1.1-c3-0-7
Degree $2$
Conductor $490$
Sign $1$
Analytic cond. $28.9109$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 4·4-s + 5·5-s − 2·6-s − 8·8-s − 26·9-s − 10·10-s − 2·11-s + 4·12-s + 8·13-s + 5·15-s + 16·16-s + 52·17-s + 52·18-s − 26·19-s + 20·20-s + 4·22-s + 67·23-s − 8·24-s + 25·25-s − 16·26-s − 53·27-s + 69·29-s − 10·30-s + 332·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.192·3-s + 1/2·4-s + 0.447·5-s − 0.136·6-s − 0.353·8-s − 0.962·9-s − 0.316·10-s − 0.0548·11-s + 0.0962·12-s + 0.170·13-s + 0.0860·15-s + 1/4·16-s + 0.741·17-s + 0.680·18-s − 0.313·19-s + 0.223·20-s + 0.0387·22-s + 0.607·23-s − 0.0680·24-s + 1/5·25-s − 0.120·26-s − 0.377·27-s + 0.441·29-s − 0.0608·30-s + 1.92·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(28.9109\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 490,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.490156775\)
\(L(\frac12)\) \(\approx\) \(1.490156775\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 - p T \)
7 \( 1 \)
good3 \( 1 - T + p^{3} T^{2} \)
11 \( 1 + 2 T + p^{3} T^{2} \)
13 \( 1 - 8 T + p^{3} T^{2} \)
17 \( 1 - 52 T + p^{3} T^{2} \)
19 \( 1 + 26 T + p^{3} T^{2} \)
23 \( 1 - 67 T + p^{3} T^{2} \)
29 \( 1 - 69 T + p^{3} T^{2} \)
31 \( 1 - 332 T + p^{3} T^{2} \)
37 \( 1 - 196 T + p^{3} T^{2} \)
41 \( 1 + 353 T + p^{3} T^{2} \)
43 \( 1 + 369 T + p^{3} T^{2} \)
47 \( 1 + 88 T + p^{3} T^{2} \)
53 \( 1 - 582 T + p^{3} T^{2} \)
59 \( 1 - 350 T + p^{3} T^{2} \)
61 \( 1 - 467 T + p^{3} T^{2} \)
67 \( 1 - 291 T + p^{3} T^{2} \)
71 \( 1 - 770 T + p^{3} T^{2} \)
73 \( 1 + 628 T + p^{3} T^{2} \)
79 \( 1 - 1170 T + p^{3} T^{2} \)
83 \( 1 + 525 T + p^{3} T^{2} \)
89 \( 1 + p T + p^{3} T^{2} \)
97 \( 1 - 290 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31326811407164678881123813400, −9.728138980797757092857073038461, −8.600425776644537930212052514150, −8.195547144602069151204134805798, −6.90660916463151409284539033435, −6.04306578245275794700473369377, −5.00759978637281288340496691006, −3.34471378606230485181948214199, −2.32829999462431807938763059265, −0.841771476100948610717919718941, 0.841771476100948610717919718941, 2.32829999462431807938763059265, 3.34471378606230485181948214199, 5.00759978637281288340496691006, 6.04306578245275794700473369377, 6.90660916463151409284539033435, 8.195547144602069151204134805798, 8.600425776644537930212052514150, 9.728138980797757092857073038461, 10.31326811407164678881123813400

Graph of the $Z$-function along the critical line