L(s) = 1 | − 4·2-s − 5·3-s + 16·4-s − 25·5-s + 20·6-s − 64·8-s − 218·9-s + 100·10-s + 198·11-s − 80·12-s − 340·13-s + 125·15-s + 256·16-s + 1.84e3·17-s + 872·18-s − 1.21e3·19-s − 400·20-s − 792·22-s + 2.82e3·23-s + 320·24-s + 625·25-s + 1.36e3·26-s + 2.30e3·27-s − 4.53e3·29-s − 500·30-s − 712·31-s − 1.02e3·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.320·3-s + 1/2·4-s − 0.447·5-s + 0.226·6-s − 0.353·8-s − 0.897·9-s + 0.316·10-s + 0.493·11-s − 0.160·12-s − 0.557·13-s + 0.143·15-s + 1/4·16-s + 1.55·17-s + 0.634·18-s − 0.768·19-s − 0.223·20-s − 0.348·22-s + 1.11·23-s + 0.113·24-s + 1/5·25-s + 0.394·26-s + 0.608·27-s − 1.00·29-s − 0.101·30-s − 0.133·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(490s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 5 | 1+p2T |
| 7 | 1 |
good | 3 | 1+5T+p5T2 |
| 11 | 1−18pT+p5T2 |
| 13 | 1+340T+p5T2 |
| 17 | 1−1848T+p5T2 |
| 19 | 1+1210T+p5T2 |
| 23 | 1−2823T+p5T2 |
| 29 | 1+4539T+p5T2 |
| 31 | 1+712T+p5T2 |
| 37 | 1+7324T+p5T2 |
| 41 | 1−15633T+p5T2 |
| 43 | 1−15827T+p5T2 |
| 47 | 1+3192T+p5T2 |
| 53 | 1+20046T+p5T2 |
| 59 | 1−23046T+p5T2 |
| 61 | 1+379T+p5T2 |
| 67 | 1+35473T+p5T2 |
| 71 | 1−71814T+p5T2 |
| 73 | 1−31664T+p5T2 |
| 79 | 1−8534T+p5T2 |
| 83 | 1+106551T+p5T2 |
| 89 | 1+12303T+p5T2 |
| 97 | 1+102802T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.615870674164418658863117830815, −8.871562357472780033269785115168, −7.930195139847184114257882536551, −7.14990445350704787974502615024, −6.05986591078844456835430972606, −5.15054978845127285450422846705, −3.70984437855153237747120140118, −2.60339062353864051727882878826, −1.10518105160673696012672215949, 0,
1.10518105160673696012672215949, 2.60339062353864051727882878826, 3.70984437855153237747120140118, 5.15054978845127285450422846705, 6.05986591078844456835430972606, 7.14990445350704787974502615024, 7.930195139847184114257882536551, 8.871562357472780033269785115168, 9.615870674164418658863117830815