Properties

Label 2-490-1.1-c5-0-35
Degree $2$
Conductor $490$
Sign $-1$
Analytic cond. $78.5880$
Root an. cond. $8.86499$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 5·3-s + 16·4-s − 25·5-s + 20·6-s − 64·8-s − 218·9-s + 100·10-s + 198·11-s − 80·12-s − 340·13-s + 125·15-s + 256·16-s + 1.84e3·17-s + 872·18-s − 1.21e3·19-s − 400·20-s − 792·22-s + 2.82e3·23-s + 320·24-s + 625·25-s + 1.36e3·26-s + 2.30e3·27-s − 4.53e3·29-s − 500·30-s − 712·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.320·3-s + 1/2·4-s − 0.447·5-s + 0.226·6-s − 0.353·8-s − 0.897·9-s + 0.316·10-s + 0.493·11-s − 0.160·12-s − 0.557·13-s + 0.143·15-s + 1/4·16-s + 1.55·17-s + 0.634·18-s − 0.768·19-s − 0.223·20-s − 0.348·22-s + 1.11·23-s + 0.113·24-s + 1/5·25-s + 0.394·26-s + 0.608·27-s − 1.00·29-s − 0.101·30-s − 0.133·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.5880\)
Root analytic conductor: \(8.86499\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 490,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 + p^{2} T \)
7 \( 1 \)
good3 \( 1 + 5 T + p^{5} T^{2} \)
11 \( 1 - 18 p T + p^{5} T^{2} \)
13 \( 1 + 340 T + p^{5} T^{2} \)
17 \( 1 - 1848 T + p^{5} T^{2} \)
19 \( 1 + 1210 T + p^{5} T^{2} \)
23 \( 1 - 2823 T + p^{5} T^{2} \)
29 \( 1 + 4539 T + p^{5} T^{2} \)
31 \( 1 + 712 T + p^{5} T^{2} \)
37 \( 1 + 7324 T + p^{5} T^{2} \)
41 \( 1 - 15633 T + p^{5} T^{2} \)
43 \( 1 - 15827 T + p^{5} T^{2} \)
47 \( 1 + 3192 T + p^{5} T^{2} \)
53 \( 1 + 20046 T + p^{5} T^{2} \)
59 \( 1 - 23046 T + p^{5} T^{2} \)
61 \( 1 + 379 T + p^{5} T^{2} \)
67 \( 1 + 35473 T + p^{5} T^{2} \)
71 \( 1 - 71814 T + p^{5} T^{2} \)
73 \( 1 - 31664 T + p^{5} T^{2} \)
79 \( 1 - 8534 T + p^{5} T^{2} \)
83 \( 1 + 106551 T + p^{5} T^{2} \)
89 \( 1 + 12303 T + p^{5} T^{2} \)
97 \( 1 + 102802 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.615870674164418658863117830815, −8.871562357472780033269785115168, −7.930195139847184114257882536551, −7.14990445350704787974502615024, −6.05986591078844456835430972606, −5.15054978845127285450422846705, −3.70984437855153237747120140118, −2.60339062353864051727882878826, −1.10518105160673696012672215949, 0, 1.10518105160673696012672215949, 2.60339062353864051727882878826, 3.70984437855153237747120140118, 5.15054978845127285450422846705, 6.05986591078844456835430972606, 7.14990445350704787974502615024, 7.930195139847184114257882536551, 8.871562357472780033269785115168, 9.615870674164418658863117830815

Graph of the $Z$-function along the critical line