L(s) = 1 | + 0.411·2-s + 0.231·3-s − 1.83·4-s + 0.0951·6-s − 3.56·7-s − 1.57·8-s − 2.94·9-s − 4.00·11-s − 0.423·12-s − 3.83·13-s − 1.46·14-s + 3.01·16-s − 0.709·17-s − 1.21·18-s − 6.25·19-s − 0.824·21-s − 1.64·22-s − 1.59·23-s − 0.364·24-s − 1.57·26-s − 1.37·27-s + 6.53·28-s + 2.22·29-s + 1.31·31-s + 4.39·32-s − 0.925·33-s − 0.291·34-s + ⋯ |
L(s) = 1 | + 0.291·2-s + 0.133·3-s − 0.915·4-s + 0.0388·6-s − 1.34·7-s − 0.557·8-s − 0.982·9-s − 1.20·11-s − 0.122·12-s − 1.06·13-s − 0.392·14-s + 0.753·16-s − 0.172·17-s − 0.285·18-s − 1.43·19-s − 0.179·21-s − 0.351·22-s − 0.332·23-s − 0.0743·24-s − 0.309·26-s − 0.264·27-s + 1.23·28-s + 0.412·29-s + 0.235·31-s + 0.776·32-s − 0.161·33-s − 0.0500·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.004320807844 |
L(21) |
≈ |
0.004320807844 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1+T |
good | 2 | 1−0.411T+2T2 |
| 3 | 1−0.231T+3T2 |
| 7 | 1+3.56T+7T2 |
| 11 | 1+4.00T+11T2 |
| 13 | 1+3.83T+13T2 |
| 17 | 1+0.709T+17T2 |
| 19 | 1+6.25T+19T2 |
| 23 | 1+1.59T+23T2 |
| 29 | 1−2.22T+29T2 |
| 31 | 1−1.31T+31T2 |
| 37 | 1+5.52T+37T2 |
| 41 | 1+10.8T+41T2 |
| 43 | 1−3.23T+43T2 |
| 47 | 1+7.97T+47T2 |
| 53 | 1+9.53T+53T2 |
| 59 | 1+10.4T+59T2 |
| 61 | 1+11.5T+61T2 |
| 67 | 1−5.42T+67T2 |
| 71 | 1−7.54T+71T2 |
| 73 | 1−0.717T+73T2 |
| 79 | 1+0.425T+79T2 |
| 83 | 1−12.5T+83T2 |
| 89 | 1−15.8T+89T2 |
| 97 | 1−16.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.249082798980141219357933699998, −7.74824668387358754489691891587, −6.53008270739412503288411733592, −6.16580938178917925047873336210, −5.12666836931183465946116922213, −4.76250935045636058037798924688, −3.57638853613800261660574586756, −3.03629202119177778667743602958, −2.22317449680797359443373612053, −0.03131565452827996904895270360,
0.03131565452827996904895270360, 2.22317449680797359443373612053, 3.03629202119177778667743602958, 3.57638853613800261660574586756, 4.76250935045636058037798924688, 5.12666836931183465946116922213, 6.16580938178917925047873336210, 6.53008270739412503288411733592, 7.74824668387358754489691891587, 8.249082798980141219357933699998