Properties

Label 2-4925-1.1-c1-0-1
Degree $2$
Conductor $4925$
Sign $1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.183·2-s − 2.64·3-s − 1.96·4-s + 0.484·6-s − 4.36·7-s + 0.727·8-s + 3.97·9-s − 0.259·11-s + 5.19·12-s − 0.888·13-s + 0.800·14-s + 3.79·16-s − 3.65·17-s − 0.728·18-s + 3.95·19-s + 11.5·21-s + 0.0475·22-s + 2.56·23-s − 1.92·24-s + 0.162·26-s − 2.57·27-s + 8.57·28-s − 2.50·29-s − 6.76·31-s − 2.15·32-s + 0.684·33-s + 0.670·34-s + ⋯
L(s)  = 1  − 0.129·2-s − 1.52·3-s − 0.983·4-s + 0.197·6-s − 1.64·7-s + 0.257·8-s + 1.32·9-s − 0.0781·11-s + 1.49·12-s − 0.246·13-s + 0.213·14-s + 0.949·16-s − 0.886·17-s − 0.171·18-s + 0.908·19-s + 2.51·21-s + 0.0101·22-s + 0.535·23-s − 0.392·24-s + 0.0319·26-s − 0.494·27-s + 1.62·28-s − 0.464·29-s − 1.21·31-s − 0.380·32-s + 0.119·33-s + 0.115·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.003668246022\)
\(L(\frac12)\) \(\approx\) \(0.003668246022\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 + T \)
good2 \( 1 + 0.183T + 2T^{2} \)
3 \( 1 + 2.64T + 3T^{2} \)
7 \( 1 + 4.36T + 7T^{2} \)
11 \( 1 + 0.259T + 11T^{2} \)
13 \( 1 + 0.888T + 13T^{2} \)
17 \( 1 + 3.65T + 17T^{2} \)
19 \( 1 - 3.95T + 19T^{2} \)
23 \( 1 - 2.56T + 23T^{2} \)
29 \( 1 + 2.50T + 29T^{2} \)
31 \( 1 + 6.76T + 31T^{2} \)
37 \( 1 + 9.87T + 37T^{2} \)
41 \( 1 + 10.6T + 41T^{2} \)
43 \( 1 + 4.66T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 10.0T + 53T^{2} \)
59 \( 1 + 8.02T + 59T^{2} \)
61 \( 1 - 2.13T + 61T^{2} \)
67 \( 1 + 1.00T + 67T^{2} \)
71 \( 1 + 0.407T + 71T^{2} \)
73 \( 1 - 1.66T + 73T^{2} \)
79 \( 1 - 3.08T + 79T^{2} \)
83 \( 1 - 12.2T + 83T^{2} \)
89 \( 1 + 6.10T + 89T^{2} \)
97 \( 1 + 8.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.348811675403205095483634249536, −7.23777232816997929751415706619, −6.71287532696150428558809252081, −6.09167072915374353138101077746, −5.17942443444345990920534752610, −4.95271419842830442191274970541, −3.75094278071744066533552927877, −3.17884264527991712336692651702, −1.50106250291919630617288439099, −0.03780971162271424173118123128, 0.03780971162271424173118123128, 1.50106250291919630617288439099, 3.17884264527991712336692651702, 3.75094278071744066533552927877, 4.95271419842830442191274970541, 5.17942443444345990920534752610, 6.09167072915374353138101077746, 6.71287532696150428558809252081, 7.23777232816997929751415706619, 8.348811675403205095483634249536

Graph of the $Z$-function along the critical line