Properties

Label 2-4925-1.1-c1-0-10
Degree $2$
Conductor $4925$
Sign $1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64·2-s + 0.795·3-s + 5.02·4-s − 2.10·6-s − 2.31·7-s − 8.00·8-s − 2.36·9-s − 4.06·11-s + 3.99·12-s − 0.795·13-s + 6.13·14-s + 11.1·16-s − 5.31·17-s + 6.27·18-s − 2.77·19-s − 1.83·21-s + 10.7·22-s − 8.05·23-s − 6.36·24-s + 2.10·26-s − 4.26·27-s − 11.6·28-s + 7.71·29-s + 4.04·31-s − 13.5·32-s − 3.23·33-s + 14.0·34-s + ⋯
L(s)  = 1  − 1.87·2-s + 0.459·3-s + 2.51·4-s − 0.860·6-s − 0.874·7-s − 2.83·8-s − 0.789·9-s − 1.22·11-s + 1.15·12-s − 0.220·13-s + 1.63·14-s + 2.79·16-s − 1.28·17-s + 1.47·18-s − 0.636·19-s − 0.401·21-s + 2.29·22-s − 1.68·23-s − 1.29·24-s + 0.413·26-s − 0.821·27-s − 2.19·28-s + 1.43·29-s + 0.726·31-s − 2.40·32-s − 0.562·33-s + 2.41·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1426966851\)
\(L(\frac12)\) \(\approx\) \(0.1426966851\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 + T \)
good2 \( 1 + 2.64T + 2T^{2} \)
3 \( 1 - 0.795T + 3T^{2} \)
7 \( 1 + 2.31T + 7T^{2} \)
11 \( 1 + 4.06T + 11T^{2} \)
13 \( 1 + 0.795T + 13T^{2} \)
17 \( 1 + 5.31T + 17T^{2} \)
19 \( 1 + 2.77T + 19T^{2} \)
23 \( 1 + 8.05T + 23T^{2} \)
29 \( 1 - 7.71T + 29T^{2} \)
31 \( 1 - 4.04T + 31T^{2} \)
37 \( 1 - 6.57T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 + 7.11T + 43T^{2} \)
47 \( 1 - 2.38T + 47T^{2} \)
53 \( 1 + 13.5T + 53T^{2} \)
59 \( 1 - 11.8T + 59T^{2} \)
61 \( 1 - 9.52T + 61T^{2} \)
67 \( 1 + 2.42T + 67T^{2} \)
71 \( 1 + 8.31T + 71T^{2} \)
73 \( 1 + 16.3T + 73T^{2} \)
79 \( 1 + 13.0T + 79T^{2} \)
83 \( 1 + 2.69T + 83T^{2} \)
89 \( 1 + 3.57T + 89T^{2} \)
97 \( 1 + 5.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440676507145179809697855778806, −7.927888572077619365719329143166, −6.99353759662930450860840721712, −6.40420037495449815775459067689, −5.79760316355393600097993593646, −4.50054266563053600645886641969, −3.12410297869396013528651558164, −2.61050999878008539025472366918, −1.89453924246241008216507570086, −0.24530493089577228690068579332, 0.24530493089577228690068579332, 1.89453924246241008216507570086, 2.61050999878008539025472366918, 3.12410297869396013528651558164, 4.50054266563053600645886641969, 5.79760316355393600097993593646, 6.40420037495449815775459067689, 6.99353759662930450860840721712, 7.927888572077619365719329143166, 8.440676507145179809697855778806

Graph of the $Z$-function along the critical line