L(s) = 1 | − 1.70·2-s − 0.982·3-s + 0.895·4-s + 1.67·6-s + 5.03·7-s + 1.87·8-s − 2.03·9-s + 2.51·11-s − 0.880·12-s + 5.29·13-s − 8.56·14-s − 4.98·16-s − 5.08·17-s + 3.46·18-s + 3.09·19-s − 4.94·21-s − 4.28·22-s + 7.49·23-s − 1.84·24-s − 9.01·26-s + 4.94·27-s + 4.51·28-s + 8.95·29-s − 4.27·31-s + 4.73·32-s − 2.47·33-s + 8.65·34-s + ⋯ |
L(s) = 1 | − 1.20·2-s − 0.567·3-s + 0.447·4-s + 0.682·6-s + 1.90·7-s + 0.664·8-s − 0.678·9-s + 0.759·11-s − 0.254·12-s + 1.46·13-s − 2.28·14-s − 1.24·16-s − 1.23·17-s + 0.816·18-s + 0.709·19-s − 1.07·21-s − 0.913·22-s + 1.56·23-s − 0.376·24-s − 1.76·26-s + 0.952·27-s + 0.852·28-s + 1.66·29-s − 0.767·31-s + 0.836·32-s − 0.430·33-s + 1.48·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.216563174 |
L(21) |
≈ |
1.216563174 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1−T |
good | 2 | 1+1.70T+2T2 |
| 3 | 1+0.982T+3T2 |
| 7 | 1−5.03T+7T2 |
| 11 | 1−2.51T+11T2 |
| 13 | 1−5.29T+13T2 |
| 17 | 1+5.08T+17T2 |
| 19 | 1−3.09T+19T2 |
| 23 | 1−7.49T+23T2 |
| 29 | 1−8.95T+29T2 |
| 31 | 1+4.27T+31T2 |
| 37 | 1−0.741T+37T2 |
| 41 | 1+1.33T+41T2 |
| 43 | 1−9.49T+43T2 |
| 47 | 1+2.68T+47T2 |
| 53 | 1−1.33T+53T2 |
| 59 | 1−0.910T+59T2 |
| 61 | 1+5.51T+61T2 |
| 67 | 1−2.79T+67T2 |
| 71 | 1−13.3T+71T2 |
| 73 | 1−12.8T+73T2 |
| 79 | 1+6.18T+79T2 |
| 83 | 1+11.9T+83T2 |
| 89 | 1−3.68T+89T2 |
| 97 | 1−8.00T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.514018134746900192816231540606, −7.78117234444899395448261220078, −6.94979725431502884073650500967, −6.26785582527633759606756079011, −5.23195128053892604489415183051, −4.74174326145237699721794320085, −3.89038229473508573528557701469, −2.48523006200615856326536295270, −1.36020398260320457395866743069, −0.899244788065390005946172557163,
0.899244788065390005946172557163, 1.36020398260320457395866743069, 2.48523006200615856326536295270, 3.89038229473508573528557701469, 4.74174326145237699721794320085, 5.23195128053892604489415183051, 6.26785582527633759606756079011, 6.94979725431502884073650500967, 7.78117234444899395448261220078, 8.514018134746900192816231540606