Properties

Label 2-4925-1.1-c1-0-126
Degree $2$
Conductor $4925$
Sign $1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.70·2-s − 0.982·3-s + 0.895·4-s + 1.67·6-s + 5.03·7-s + 1.87·8-s − 2.03·9-s + 2.51·11-s − 0.880·12-s + 5.29·13-s − 8.56·14-s − 4.98·16-s − 5.08·17-s + 3.46·18-s + 3.09·19-s − 4.94·21-s − 4.28·22-s + 7.49·23-s − 1.84·24-s − 9.01·26-s + 4.94·27-s + 4.51·28-s + 8.95·29-s − 4.27·31-s + 4.73·32-s − 2.47·33-s + 8.65·34-s + ⋯
L(s)  = 1  − 1.20·2-s − 0.567·3-s + 0.447·4-s + 0.682·6-s + 1.90·7-s + 0.664·8-s − 0.678·9-s + 0.759·11-s − 0.254·12-s + 1.46·13-s − 2.28·14-s − 1.24·16-s − 1.23·17-s + 0.816·18-s + 0.709·19-s − 1.07·21-s − 0.913·22-s + 1.56·23-s − 0.376·24-s − 1.76·26-s + 0.952·27-s + 0.852·28-s + 1.66·29-s − 0.767·31-s + 0.836·32-s − 0.430·33-s + 1.48·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.216563174\)
\(L(\frac12)\) \(\approx\) \(1.216563174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 + 1.70T + 2T^{2} \)
3 \( 1 + 0.982T + 3T^{2} \)
7 \( 1 - 5.03T + 7T^{2} \)
11 \( 1 - 2.51T + 11T^{2} \)
13 \( 1 - 5.29T + 13T^{2} \)
17 \( 1 + 5.08T + 17T^{2} \)
19 \( 1 - 3.09T + 19T^{2} \)
23 \( 1 - 7.49T + 23T^{2} \)
29 \( 1 - 8.95T + 29T^{2} \)
31 \( 1 + 4.27T + 31T^{2} \)
37 \( 1 - 0.741T + 37T^{2} \)
41 \( 1 + 1.33T + 41T^{2} \)
43 \( 1 - 9.49T + 43T^{2} \)
47 \( 1 + 2.68T + 47T^{2} \)
53 \( 1 - 1.33T + 53T^{2} \)
59 \( 1 - 0.910T + 59T^{2} \)
61 \( 1 + 5.51T + 61T^{2} \)
67 \( 1 - 2.79T + 67T^{2} \)
71 \( 1 - 13.3T + 71T^{2} \)
73 \( 1 - 12.8T + 73T^{2} \)
79 \( 1 + 6.18T + 79T^{2} \)
83 \( 1 + 11.9T + 83T^{2} \)
89 \( 1 - 3.68T + 89T^{2} \)
97 \( 1 - 8.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.514018134746900192816231540606, −7.78117234444899395448261220078, −6.94979725431502884073650500967, −6.26785582527633759606756079011, −5.23195128053892604489415183051, −4.74174326145237699721794320085, −3.89038229473508573528557701469, −2.48523006200615856326536295270, −1.36020398260320457395866743069, −0.899244788065390005946172557163, 0.899244788065390005946172557163, 1.36020398260320457395866743069, 2.48523006200615856326536295270, 3.89038229473508573528557701469, 4.74174326145237699721794320085, 5.23195128053892604489415183051, 6.26785582527633759606756079011, 6.94979725431502884073650500967, 7.78117234444899395448261220078, 8.514018134746900192816231540606

Graph of the $Z$-function along the critical line