Properties

Label 2-4925-1.1-c1-0-202
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.411·2-s − 0.231·3-s − 1.83·4-s + 0.0951·6-s + 3.56·7-s + 1.57·8-s − 2.94·9-s − 4.00·11-s + 0.423·12-s + 3.83·13-s − 1.46·14-s + 3.01·16-s + 0.709·17-s + 1.21·18-s − 6.25·19-s − 0.824·21-s + 1.64·22-s + 1.59·23-s − 0.364·24-s − 1.57·26-s + 1.37·27-s − 6.53·28-s + 2.22·29-s + 1.31·31-s − 4.39·32-s + 0.925·33-s − 0.291·34-s + ⋯
L(s)  = 1  − 0.291·2-s − 0.133·3-s − 0.915·4-s + 0.0388·6-s + 1.34·7-s + 0.557·8-s − 0.982·9-s − 1.20·11-s + 0.122·12-s + 1.06·13-s − 0.392·14-s + 0.753·16-s + 0.172·17-s + 0.285·18-s − 1.43·19-s − 0.179·21-s + 0.351·22-s + 0.332·23-s − 0.0743·24-s − 0.309·26-s + 0.264·27-s − 1.23·28-s + 0.412·29-s + 0.235·31-s − 0.776·32-s + 0.161·33-s − 0.0500·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 + 0.411T + 2T^{2} \)
3 \( 1 + 0.231T + 3T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 4.00T + 11T^{2} \)
13 \( 1 - 3.83T + 13T^{2} \)
17 \( 1 - 0.709T + 17T^{2} \)
19 \( 1 + 6.25T + 19T^{2} \)
23 \( 1 - 1.59T + 23T^{2} \)
29 \( 1 - 2.22T + 29T^{2} \)
31 \( 1 - 1.31T + 31T^{2} \)
37 \( 1 - 5.52T + 37T^{2} \)
41 \( 1 + 10.8T + 41T^{2} \)
43 \( 1 + 3.23T + 43T^{2} \)
47 \( 1 - 7.97T + 47T^{2} \)
53 \( 1 - 9.53T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 11.5T + 61T^{2} \)
67 \( 1 + 5.42T + 67T^{2} \)
71 \( 1 - 7.54T + 71T^{2} \)
73 \( 1 + 0.717T + 73T^{2} \)
79 \( 1 + 0.425T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 15.8T + 89T^{2} \)
97 \( 1 + 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.123876775417964370657651530533, −7.52009320731877183341910141826, −6.28616264889486964443162924256, −5.59833148801822269123661912955, −4.91633109232191149520520787139, −4.38137587143402194571512056777, −3.34610338285741258737471616028, −2.29347315258430748888413999118, −1.20881229678607296404942653453, 0, 1.20881229678607296404942653453, 2.29347315258430748888413999118, 3.34610338285741258737471616028, 4.38137587143402194571512056777, 4.91633109232191149520520787139, 5.59833148801822269123661912955, 6.28616264889486964443162924256, 7.52009320731877183341910141826, 8.123876775417964370657651530533

Graph of the $Z$-function along the critical line