Properties

Label 2-4925-1.1-c1-0-298
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.02·2-s + 1.02·3-s + 2.08·4-s + 2.07·6-s + 1.36·7-s + 0.181·8-s − 1.94·9-s − 4.88·11-s + 2.14·12-s + 0.0386·13-s + 2.76·14-s − 3.81·16-s − 3.03·17-s − 3.93·18-s − 2.16·19-s + 1.40·21-s − 9.88·22-s − 0.0322·23-s + 0.186·24-s + 0.0781·26-s − 5.07·27-s + 2.85·28-s + 7.82·29-s − 8.10·31-s − 8.07·32-s − 5.01·33-s − 6.13·34-s + ⋯
L(s)  = 1  + 1.42·2-s + 0.592·3-s + 1.04·4-s + 0.847·6-s + 0.517·7-s + 0.0641·8-s − 0.648·9-s − 1.47·11-s + 0.619·12-s + 0.0107·13-s + 0.739·14-s − 0.953·16-s − 0.735·17-s − 0.927·18-s − 0.495·19-s + 0.306·21-s − 2.10·22-s − 0.00672·23-s + 0.0380·24-s + 0.0153·26-s − 0.977·27-s + 0.540·28-s + 1.45·29-s − 1.45·31-s − 1.42·32-s − 0.873·33-s − 1.05·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 - 2.02T + 2T^{2} \)
3 \( 1 - 1.02T + 3T^{2} \)
7 \( 1 - 1.36T + 7T^{2} \)
11 \( 1 + 4.88T + 11T^{2} \)
13 \( 1 - 0.0386T + 13T^{2} \)
17 \( 1 + 3.03T + 17T^{2} \)
19 \( 1 + 2.16T + 19T^{2} \)
23 \( 1 + 0.0322T + 23T^{2} \)
29 \( 1 - 7.82T + 29T^{2} \)
31 \( 1 + 8.10T + 31T^{2} \)
37 \( 1 - 5.88T + 37T^{2} \)
41 \( 1 + 11.6T + 41T^{2} \)
43 \( 1 - 7.66T + 43T^{2} \)
47 \( 1 + 3.51T + 47T^{2} \)
53 \( 1 - 13.7T + 53T^{2} \)
59 \( 1 + 3.47T + 59T^{2} \)
61 \( 1 + 5.05T + 61T^{2} \)
67 \( 1 + 12.3T + 67T^{2} \)
71 \( 1 - 1.08T + 71T^{2} \)
73 \( 1 + 11.8T + 73T^{2} \)
79 \( 1 - 2.67T + 79T^{2} \)
83 \( 1 + 2.27T + 83T^{2} \)
89 \( 1 + 2.18T + 89T^{2} \)
97 \( 1 - 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85696411808209756114497225426, −7.09939682354225175886412064214, −6.16478045259582707198072496638, −5.55362948310809400320364159872, −4.86569429469528857977773519943, −4.27585709148997108348064157118, −3.27215500259753948214114972612, −2.68026521652995089052528476325, −1.99315449752863297989648972789, 0, 1.99315449752863297989648972789, 2.68026521652995089052528476325, 3.27215500259753948214114972612, 4.27585709148997108348064157118, 4.86569429469528857977773519943, 5.55362948310809400320364159872, 6.16478045259582707198072496638, 7.09939682354225175886412064214, 7.85696411808209756114497225426

Graph of the $Z$-function along the critical line