L(s) = 1 | + 81.4·5-s + 49·7-s + 340.·11-s − 1.10e3·13-s + 197.·17-s − 2.33e3·19-s − 2.60e3·23-s + 3.50e3·25-s − 7.91e3·29-s − 9.04e3·31-s + 3.98e3·35-s − 5.47e3·37-s + 1.52e4·41-s − 3.82e3·43-s − 1.94e3·47-s + 2.40e3·49-s − 2.62e4·53-s + 2.77e4·55-s + 4.58e4·59-s − 4.34e4·61-s − 8.96e4·65-s + 1.58e4·67-s + 2.41e4·71-s + 6.90e4·73-s + 1.66e4·77-s + 6.09e4·79-s − 5.22e4·83-s + ⋯ |
L(s) = 1 | + 1.45·5-s + 0.377·7-s + 0.847·11-s − 1.80·13-s + 0.165·17-s − 1.48·19-s − 1.02·23-s + 1.12·25-s − 1.74·29-s − 1.69·31-s + 0.550·35-s − 0.657·37-s + 1.41·41-s − 0.315·43-s − 0.128·47-s + 0.142·49-s − 1.28·53-s + 1.23·55-s + 1.71·59-s − 1.49·61-s − 2.63·65-s + 0.431·67-s + 0.567·71-s + 1.51·73-s + 0.320·77-s + 1.09·79-s − 0.832·83-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(504s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−49T |
good | 5 | 1−81.4T+3.12e3T2 |
| 11 | 1−340.T+1.61e5T2 |
| 13 | 1+1.10e3T+3.71e5T2 |
| 17 | 1−197.T+1.41e6T2 |
| 19 | 1+2.33e3T+2.47e6T2 |
| 23 | 1+2.60e3T+6.43e6T2 |
| 29 | 1+7.91e3T+2.05e7T2 |
| 31 | 1+9.04e3T+2.86e7T2 |
| 37 | 1+5.47e3T+6.93e7T2 |
| 41 | 1−1.52e4T+1.15e8T2 |
| 43 | 1+3.82e3T+1.47e8T2 |
| 47 | 1+1.94e3T+2.29e8T2 |
| 53 | 1+2.62e4T+4.18e8T2 |
| 59 | 1−4.58e4T+7.14e8T2 |
| 61 | 1+4.34e4T+8.44e8T2 |
| 67 | 1−1.58e4T+1.35e9T2 |
| 71 | 1−2.41e4T+1.80e9T2 |
| 73 | 1−6.90e4T+2.07e9T2 |
| 79 | 1−6.09e4T+3.07e9T2 |
| 83 | 1+5.22e4T+3.93e9T2 |
| 89 | 1+1.00e5T+5.58e9T2 |
| 97 | 1−6.49e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.567767178512870587682137245733, −9.131036245862864957765690512170, −7.81985531457090474611893169462, −6.83922864900154506249809388919, −5.90034977237662648862442148715, −5.09822234484879880557327616876, −3.93240924243128955304812489077, −2.26108204243016073910759863426, −1.77469360753255666603762645130, 0,
1.77469360753255666603762645130, 2.26108204243016073910759863426, 3.93240924243128955304812489077, 5.09822234484879880557327616876, 5.90034977237662648862442148715, 6.83922864900154506249809388919, 7.81985531457090474611893169462, 9.131036245862864957765690512170, 9.567767178512870587682137245733