L(s) = 1 | + (−1.40 − 0.127i)2-s + (1.96 + 0.359i)4-s + (1.87 − 1.08i)5-s + (2.55 + 0.669i)7-s + (−2.72 − 0.758i)8-s + (−2.77 + 1.28i)10-s + (1.67 − 2.89i)11-s + 1.74·13-s + (−3.51 − 1.27i)14-s + (3.74 + 1.41i)16-s + (−0.283 + 0.491i)17-s + (−0.270 − 0.467i)19-s + (4.07 − 1.45i)20-s + (−2.72 + 3.86i)22-s + (−5.21 + 3.01i)23-s + ⋯ |
L(s) = 1 | + (−0.995 − 0.0903i)2-s + (0.983 + 0.179i)4-s + (0.837 − 0.483i)5-s + (0.967 + 0.253i)7-s + (−0.963 − 0.268i)8-s + (−0.877 + 0.405i)10-s + (0.503 − 0.872i)11-s + 0.483·13-s + (−0.940 − 0.339i)14-s + (0.935 + 0.354i)16-s + (−0.0688 + 0.119i)17-s + (−0.0619 − 0.107i)19-s + (0.910 − 0.324i)20-s + (−0.580 + 0.823i)22-s + (−1.08 + 0.627i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18217 - 0.297126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18217 - 0.297126i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.127i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.55 - 0.669i)T \) |
good | 5 | \( 1 + (-1.87 + 1.08i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.67 + 2.89i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.74T + 13T^{2} \) |
| 17 | \( 1 + (0.283 - 0.491i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.270 + 0.467i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.21 - 3.01i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.77T + 29T^{2} \) |
| 31 | \( 1 + (6.56 + 3.79i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.60 + 5.54i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 7.77T + 41T^{2} \) |
| 43 | \( 1 - 1.80iT - 43T^{2} \) |
| 47 | \( 1 + (-0.679 - 1.17i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.46 + 2.54i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-9.84 - 5.68i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.60 + 9.71i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.7 + 6.21i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.79iT - 71T^{2} \) |
| 73 | \( 1 + (-7.56 - 4.36i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.77 + 8.27i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 15.9iT - 83T^{2} \) |
| 89 | \( 1 + (6.30 + 10.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97749760017023383327709798976, −9.713404718850945562050821655329, −9.120996071343508100867969064502, −8.322050786808555257658407551004, −7.53237643263802216040970657624, −6.10600761486083659750138581644, −5.60958808487587870396104085719, −3.94056628900772601888058826694, −2.29237409246094589423192807395, −1.21477577274253163169828381047,
1.48743169964490963109449858606, 2.48294234592600286457171470297, 4.25437052265798851608917101221, 5.69771840658342174857394443914, 6.55109668541690386311842245128, 7.45622736118693583522110370446, 8.337254880331970242355134294595, 9.285757820769499726954715179971, 10.11018214959266827209341129152, 10.72864386639742602945674830570