L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·7-s + (0.707 − 0.707i)8-s + 1.41i·11-s + (0.707 − 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s + 1.41·23-s + 25-s − 1.00·28-s − 1.41·29-s + (0.707 + 0.707i)32-s − 2i·37-s − 1.41·44-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·7-s + (0.707 − 0.707i)8-s + 1.41i·11-s + (0.707 − 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s + 1.41·23-s + 25-s − 1.00·28-s − 1.41·29-s + (0.707 + 0.707i)32-s − 2i·37-s − 1.41·44-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(0.985−0.169i)Λ(1−s)
Λ(s)=(=(504s/2ΓC(s)L(s)(0.985−0.169i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
0.985−0.169i
|
Analytic conductor: |
0.251528 |
Root analytic conductor: |
0.501526 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :0), 0.985−0.169i)
|
Particular Values
L(21) |
≈ |
0.6237091526 |
L(21) |
≈ |
0.6237091526 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 7 | 1−iT |
good | 5 | 1−T2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1+T2 |
| 17 | 1+T2 |
| 19 | 1−T2 |
| 23 | 1−1.41T+T2 |
| 29 | 1+1.41T+T2 |
| 31 | 1+T2 |
| 37 | 1+2iT−T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1−T2 |
| 53 | 1−1.41T+T2 |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | 1+2T+T2 |
| 71 | 1+1.41T+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.09539624586277659311996316471, −10.27870536891162848238623005228, −9.197864045091260941480818990380, −8.941340081773811902399468238072, −7.60283446408897253793407365398, −6.93857146686148557311978969589, −5.43651881898298964296186649520, −4.29975263480637199568527049795, −2.90218956359490018053606238543, −1.84942642359722108302307649016,
1.11445972173035772105677404368, 3.19400757901157965243347857499, 4.64821740335521403509026352187, 5.71774425844654779051650892619, 6.71996813128602617644230951416, 7.46626462789162949627407698407, 8.461477255022252256962400027852, 9.131272453075463139142778115489, 10.24724136289547206026891892779, 10.88108714208982667795883332981