L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·7-s + (0.707 − 0.707i)8-s + 1.41i·11-s + (0.707 − 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s + 1.41·23-s + 25-s − 1.00·28-s − 1.41·29-s + (0.707 + 0.707i)32-s − 2i·37-s − 1.41·44-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·7-s + (0.707 − 0.707i)8-s + 1.41i·11-s + (0.707 − 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s + 1.41·23-s + 25-s − 1.00·28-s − 1.41·29-s + (0.707 + 0.707i)32-s − 2i·37-s − 1.41·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6237091526\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6237091526\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - iT \) |
good | 5 | \( 1 - T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 2iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09539624586277659311996316471, −10.27870536891162848238623005228, −9.197864045091260941480818990380, −8.941340081773811902399468238072, −7.60283446408897253793407365398, −6.93857146686148557311978969589, −5.43651881898298964296186649520, −4.29975263480637199568527049795, −2.90218956359490018053606238543, −1.84942642359722108302307649016,
1.11445972173035772105677404368, 3.19400757901157965243347857499, 4.64821740335521403509026352187, 5.71774425844654779051650892619, 6.71996813128602617644230951416, 7.46626462789162949627407698407, 8.461477255022252256962400027852, 9.131272453075463139142778115489, 10.24724136289547206026891892779, 10.88108714208982667795883332981