L(s) = 1 | + (−1.22 + 0.707i)5-s + (0.5 + 0.866i)7-s + (1.22 + 0.707i)11-s − 13-s + (0.5 + 0.866i)19-s + (0.499 − 0.866i)25-s + (0.5 − 0.866i)31-s + (−1.22 − 0.707i)35-s + (−0.5 − 0.866i)37-s − 1.41i·41-s − 43-s + (1.22 − 0.707i)47-s + (−0.499 + 0.866i)49-s − 2·55-s + (1.22 − 0.707i)65-s + ⋯ |
L(s) = 1 | + (−1.22 + 0.707i)5-s + (0.5 + 0.866i)7-s + (1.22 + 0.707i)11-s − 13-s + (0.5 + 0.866i)19-s + (0.499 − 0.866i)25-s + (0.5 − 0.866i)31-s + (−1.22 − 0.707i)35-s + (−0.5 − 0.866i)37-s − 1.41i·41-s − 43-s + (1.22 − 0.707i)47-s + (−0.499 + 0.866i)49-s − 2·55-s + (1.22 − 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.475 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.475 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7620268293\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7620268293\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.41iT - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66011663630116451726390585150, −10.45522636167720713992185071297, −9.499968631698451319253150087457, −8.549527855552450035468459675980, −7.55917077529776587537660342935, −6.97827839854047070715630623545, −5.70151990847289172330832249379, −4.47449960971579833236472073341, −3.54170474871652206340908868216, −2.13280923285315758235947114459,
1.08160545305569271639776234426, 3.27592709468854609113046103458, 4.33329557414190601727818274402, 4.98073153966592754997594122412, 6.60821740181229889229126340408, 7.44815481835568423864427563048, 8.267986284762705842757313145066, 9.051547773268775539995843567603, 10.11724510002133269095910640477, 11.28622041011387475511905024813