L(s) = 1 | + (−14.9 − 25.9i)5-s + (−128. + 19.3i)7-s + (321. + 185. i)11-s + 148. i·13-s + (−717. + 1.24e3i)17-s + (2.41e3 − 1.39e3i)19-s + (232. − 134. i)23-s + (1.11e3 − 1.92e3i)25-s − 7.53e3i·29-s + (−2.68e3 − 1.54e3i)31-s + (2.42e3 + 3.03e3i)35-s + (7.52e3 + 1.30e4i)37-s + 2.24e3·41-s − 1.77e4·43-s + (−9.99e3 − 1.73e4i)47-s + ⋯ |
L(s) = 1 | + (−0.268 − 0.464i)5-s + (−0.988 + 0.149i)7-s + (0.801 + 0.462i)11-s + 0.242i·13-s + (−0.602 + 1.04i)17-s + (1.53 − 0.885i)19-s + (0.0915 − 0.0528i)23-s + (0.356 − 0.616i)25-s − 1.66i·29-s + (−0.501 − 0.289i)31-s + (0.334 + 0.419i)35-s + (0.903 + 1.56i)37-s + 0.208·41-s − 1.46·43-s + (−0.660 − 1.14i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.154i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.988 - 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.01939130198\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01939130198\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (128. - 19.3i)T \) |
good | 5 | \( 1 + (14.9 + 25.9i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-321. - 185. i)T + (8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 148. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + (717. - 1.24e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-2.41e3 + 1.39e3i)T + (1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-232. + 134. i)T + (3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 7.53e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + (2.68e3 + 1.54e3i)T + (1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-7.52e3 - 1.30e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 2.24e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.77e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (9.99e3 + 1.73e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (4.17e3 + 2.40e3i)T + (2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.08e4 - 3.61e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (4.30e4 - 2.48e4i)T + (4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.52e4 - 4.38e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.94e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (4.03e4 + 2.33e4i)T + (1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-7.86e3 - 1.36e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 9.38e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.69e4 - 2.93e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.15e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39551494818781500870611552598, −9.547019210084181299553488264725, −8.936906062705961635045349232330, −7.88177575277838768269912843726, −6.78076241188385140854510509946, −6.10635605120725182661220667214, −4.77472446551225498812811337124, −3.88589534336790792065583788985, −2.71091035987673261246365360785, −1.26982414750708762750147437117,
0.00482680463135114437356507200, 1.31906061503688877521131993066, 3.08260436202328119683626019135, 3.52275811989811140744963754714, 5.00475452996236701747361588482, 6.11365840285188949359422831268, 6.98476815170403249807803904953, 7.68568456681266533743675899748, 9.125626380388914590255641228635, 9.499443216265934881263569422105