L(s) = 1 | + (−14.9 − 25.9i)5-s + (−128. + 19.3i)7-s + (321. + 185. i)11-s + 148. i·13-s + (−717. + 1.24e3i)17-s + (2.41e3 − 1.39e3i)19-s + (232. − 134. i)23-s + (1.11e3 − 1.92e3i)25-s − 7.53e3i·29-s + (−2.68e3 − 1.54e3i)31-s + (2.42e3 + 3.03e3i)35-s + (7.52e3 + 1.30e4i)37-s + 2.24e3·41-s − 1.77e4·43-s + (−9.99e3 − 1.73e4i)47-s + ⋯ |
L(s) = 1 | + (−0.268 − 0.464i)5-s + (−0.988 + 0.149i)7-s + (0.801 + 0.462i)11-s + 0.242i·13-s + (−0.602 + 1.04i)17-s + (1.53 − 0.885i)19-s + (0.0915 − 0.0528i)23-s + (0.356 − 0.616i)25-s − 1.66i·29-s + (−0.501 − 0.289i)31-s + (0.334 + 0.419i)35-s + (0.903 + 1.56i)37-s + 0.208·41-s − 1.46·43-s + (−0.660 − 1.14i)47-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(−0.988−0.154i)Λ(6−s)
Λ(s)=(=(504s/2ΓC(s+5/2)L(s)(−0.988−0.154i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
−0.988−0.154i
|
Analytic conductor: |
80.8334 |
Root analytic conductor: |
8.99074 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :5/2), −0.988−0.154i)
|
Particular Values
L(3) |
≈ |
0.01939130198 |
L(21) |
≈ |
0.01939130198 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(128.−19.3i)T |
good | 5 | 1+(14.9+25.9i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−321.−185.i)T+(8.05e4+1.39e5i)T2 |
| 13 | 1−148.iT−3.71e5T2 |
| 17 | 1+(717.−1.24e3i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−2.41e3+1.39e3i)T+(1.23e6−2.14e6i)T2 |
| 23 | 1+(−232.+134.i)T+(3.21e6−5.57e6i)T2 |
| 29 | 1+7.53e3iT−2.05e7T2 |
| 31 | 1+(2.68e3+1.54e3i)T+(1.43e7+2.47e7i)T2 |
| 37 | 1+(−7.52e3−1.30e4i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−2.24e3T+1.15e8T2 |
| 43 | 1+1.77e4T+1.47e8T2 |
| 47 | 1+(9.99e3+1.73e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(4.17e3+2.40e3i)T+(2.09e8+3.62e8i)T2 |
| 59 | 1+(2.08e4−3.61e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(4.30e4−2.48e4i)T+(4.22e8−7.31e8i)T2 |
| 67 | 1+(2.52e4−4.38e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+2.94e4iT−1.80e9T2 |
| 73 | 1+(4.03e4+2.33e4i)T+(1.03e9+1.79e9i)T2 |
| 79 | 1+(−7.86e3−1.36e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−9.38e4T+3.93e9T2 |
| 89 | 1+(−1.69e4−2.93e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−1.15e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39551494818781500870611552598, −9.547019210084181299553488264725, −8.936906062705961635045349232330, −7.88177575277838768269912843726, −6.78076241188385140854510509946, −6.10635605120725182661220667214, −4.77472446551225498812811337124, −3.88589534336790792065583788985, −2.71091035987673261246365360785, −1.26982414750708762750147437117,
0.00482680463135114437356507200, 1.31906061503688877521131993066, 3.08260436202328119683626019135, 3.52275811989811140744963754714, 5.00475452996236701747361588482, 6.11365840285188949359422831268, 6.98476815170403249807803904953, 7.68568456681266533743675899748, 9.125626380388914590255641228635, 9.499443216265934881263569422105