L(s) = 1 | − i·2-s − 4-s + 7-s + i·8-s − 2i·11-s − i·14-s + 16-s − 2·22-s − 25-s − 28-s + 2i·29-s − i·32-s + 2i·44-s + 49-s + i·50-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + 7-s + i·8-s − 2i·11-s − i·14-s + 16-s − 2·22-s − 25-s − 28-s + 2i·29-s − i·32-s + 2i·44-s + 49-s + i·50-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)iΛ(1−s)
Λ(s)=(=(504s/2ΓC(s)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
i
|
Analytic conductor: |
0.251528 |
Root analytic conductor: |
0.501526 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :0), i)
|
Particular Values
L(21) |
≈ |
0.8595064973 |
L(21) |
≈ |
0.8595064973 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+T2 |
| 11 | 1+2iT−T2 |
| 13 | 1+T2 |
| 17 | 1−T2 |
| 19 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1−2iT−T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1−2iT−T2 |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | 1−T2 |
| 71 | 1+T2 |
| 73 | 1−T2 |
| 79 | 1+2T+T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02736288555510689890473445734, −10.35107207482332204488348574358, −9.027915968570364710771121702588, −8.534015845060712995438600939245, −7.61542465395263608247968716370, −5.95012340013087900626517670500, −5.13862652968003523422956471952, −3.92634248655435326341959254362, −2.89421827024905918171286179056, −1.34936159779161659946630610031,
1.98369331142917368553873576877, 4.11112593998298205424011014724, 4.75866191754171657278325285436, 5.79300872100055039029290891748, 6.97513040651102840211018154660, 7.67717943805798144423115023471, 8.402449026000533424865704733239, 9.627977813884985640099135376941, 10.07024174942785458389292631485, 11.47242509949491631579469741844