L(s) = 1 | − i·2-s − 4-s + 7-s + i·8-s − 2i·11-s − i·14-s + 16-s − 2·22-s − 25-s − 28-s + 2i·29-s − i·32-s + 2i·44-s + 49-s + i·50-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + 7-s + i·8-s − 2i·11-s − i·14-s + 16-s − 2·22-s − 25-s − 28-s + 2i·29-s − i·32-s + 2i·44-s + 49-s + i·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8595064973\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8595064973\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 + T^{2} \) |
| 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 2iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02736288555510689890473445734, −10.35107207482332204488348574358, −9.027915968570364710771121702588, −8.534015845060712995438600939245, −7.61542465395263608247968716370, −5.95012340013087900626517670500, −5.13862652968003523422956471952, −3.92634248655435326341959254362, −2.89421827024905918171286179056, −1.34936159779161659946630610031,
1.98369331142917368553873576877, 4.11112593998298205424011014724, 4.75866191754171657278325285436, 5.79300872100055039029290891748, 6.97513040651102840211018154660, 7.67717943805798144423115023471, 8.402449026000533424865704733239, 9.627977813884985640099135376941, 10.07024174942785458389292631485, 11.47242509949491631579469741844