L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 14-s + 16-s − 2·23-s − 25-s − 28-s + 32-s − 2·46-s + 49-s − 50-s − 56-s + 64-s + 2·71-s − 2·79-s − 2·92-s + 98-s − 100-s − 112-s + 2·113-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 14-s + 16-s − 2·23-s − 25-s − 28-s + 32-s − 2·46-s + 49-s − 50-s − 56-s + 64-s + 2·71-s − 2·79-s − 2·92-s + 98-s − 100-s − 112-s + 2·113-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(504s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
1
|
Analytic conductor: |
0.251528 |
Root analytic conductor: |
0.501526 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ504(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.439893100 |
L(21) |
≈ |
1.439893100 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+T2 |
| 11 | (1−T)(1+T) |
| 13 | 1+T2 |
| 17 | (1−T)(1+T) |
| 19 | 1+T2 |
| 23 | (1+T)2 |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | (1−T)(1+T) |
| 53 | (1−T)(1+T) |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | (1−T)(1+T) |
| 71 | (1−T)2 |
| 73 | (1−T)(1+T) |
| 79 | (1+T)2 |
| 83 | 1+T2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36883216382947901268222888836, −10.26281683024352818903610460981, −9.666087849294455038237157313933, −8.255353598993736633003017504851, −7.28424641630970624002389000280, −6.29115887013593533422292284790, −5.65539355150237745385542105144, −4.28631963116974234825053477736, −3.43363451204020501313795054491, −2.15848280631622720996979725155,
2.15848280631622720996979725155, 3.43363451204020501313795054491, 4.28631963116974234825053477736, 5.65539355150237745385542105144, 6.29115887013593533422292284790, 7.28424641630970624002389000280, 8.255353598993736633003017504851, 9.666087849294455038237157313933, 10.26281683024352818903610460981, 11.36883216382947901268222888836