L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 14-s + 16-s − 2·23-s − 25-s − 28-s + 32-s − 2·46-s + 49-s − 50-s − 56-s + 64-s + 2·71-s − 2·79-s − 2·92-s + 98-s − 100-s − 112-s + 2·113-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 14-s + 16-s − 2·23-s − 25-s − 28-s + 32-s − 2·46-s + 49-s − 50-s − 56-s + 64-s + 2·71-s − 2·79-s − 2·92-s + 98-s − 100-s − 112-s + 2·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.439893100\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.439893100\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 + T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 + T )^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36883216382947901268222888836, −10.26281683024352818903610460981, −9.666087849294455038237157313933, −8.255353598993736633003017504851, −7.28424641630970624002389000280, −6.29115887013593533422292284790, −5.65539355150237745385542105144, −4.28631963116974234825053477736, −3.43363451204020501313795054491, −2.15848280631622720996979725155,
2.15848280631622720996979725155, 3.43363451204020501313795054491, 4.28631963116974234825053477736, 5.65539355150237745385542105144, 6.29115887013593533422292284790, 7.28424641630970624002389000280, 8.255353598993736633003017504851, 9.666087849294455038237157313933, 10.26281683024352818903610460981, 11.36883216382947901268222888836