L(s) = 1 | + (−1.21 + 1.22i)3-s − 0.481·5-s + (2.53 − 0.763i)7-s + (−0.0248 − 2.99i)9-s + 3.38·11-s + (−2.86 + 4.95i)13-s + (0.587 − 0.592i)15-s + (2.75 − 4.77i)17-s + (2.18 + 3.77i)19-s + (−2.15 + 4.04i)21-s + 3.62·23-s − 4.76·25-s + (3.71 + 3.62i)27-s + (1.53 + 2.65i)29-s + (4.67 + 8.09i)31-s + ⋯ |
L(s) = 1 | + (−0.704 + 0.710i)3-s − 0.215·5-s + (0.957 − 0.288i)7-s + (−0.00827 − 0.999i)9-s + 1.01·11-s + (−0.793 + 1.37i)13-s + (0.151 − 0.152i)15-s + (0.668 − 1.15i)17-s + (0.500 + 0.866i)19-s + (−0.469 + 0.882i)21-s + 0.756·23-s − 0.953·25-s + (0.715 + 0.698i)27-s + (0.284 + 0.492i)29-s + (0.839 + 1.45i)31-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(0.593−0.805i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(0.593−0.805i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
0.593−0.805i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), 0.593−0.805i)
|
Particular Values
L(1) |
≈ |
1.10037+0.555970i |
L(21) |
≈ |
1.10037+0.555970i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.21−1.22i)T |
| 7 | 1+(−2.53+0.763i)T |
good | 5 | 1+0.481T+5T2 |
| 11 | 1−3.38T+11T2 |
| 13 | 1+(2.86−4.95i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−2.75+4.77i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.18−3.77i)T+(−9.5+16.4i)T2 |
| 23 | 1−3.62T+23T2 |
| 29 | 1+(−1.53−2.65i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.67−8.09i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−1.48−2.57i)T+(−18.5+32.0i)T2 |
| 41 | 1+(6.29−10.9i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.90−3.30i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.88+3.26i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−5.57+9.66i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.21+7.29i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.64+6.31i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.28+2.22i)T+(−33.5+58.0i)T2 |
| 71 | 1+3.94T+71T2 |
| 73 | 1+(0.862−1.49i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.79+4.84i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.119+0.206i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−0.648−1.12i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.02+12.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33147546251289551765032504121, −10.05211937282289036015427278174, −9.523412637174555157148309431953, −8.483630480535081273419686827173, −7.26179041016808669705392711878, −6.49571263249785033473144436843, −5.10405428660720499682558260837, −4.56497476214757147299284486265, −3.41677887481579616131045325736, −1.36816456744947388170719951542,
0.985915758282882827765597647637, 2.44862837209468926098984589226, 4.16756464279804003666447553276, 5.34221109628679268278903637713, 6.00098803802663380157183189475, 7.32424336412280455515859666420, 7.84549833377342961875956217047, 8.838810934930701107393336690848, 10.13162765219220704724359639114, 10.92099254243463127234786649848