Properties

Label 2-5040-1.1-c1-0-15
Degree $2$
Conductor $5040$
Sign $1$
Analytic cond. $40.2446$
Root an. cond. $6.34386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 5·11-s + 13-s − 3·17-s + 6·19-s − 6·23-s + 25-s + 9·29-s + 35-s + 6·37-s − 8·41-s − 6·43-s + 3·47-s + 49-s + 12·53-s − 5·55-s + 8·59-s − 4·61-s + 65-s + 4·67-s + 8·71-s + 10·73-s − 5·77-s + 3·79-s − 12·83-s − 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 1.50·11-s + 0.277·13-s − 0.727·17-s + 1.37·19-s − 1.25·23-s + 1/5·25-s + 1.67·29-s + 0.169·35-s + 0.986·37-s − 1.24·41-s − 0.914·43-s + 0.437·47-s + 1/7·49-s + 1.64·53-s − 0.674·55-s + 1.04·59-s − 0.512·61-s + 0.124·65-s + 0.488·67-s + 0.949·71-s + 1.17·73-s − 0.569·77-s + 0.337·79-s − 1.31·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5040\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(40.2446\)
Root analytic conductor: \(6.34386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.979681115\)
\(L(\frac12)\) \(\approx\) \(1.979681115\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
good11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 16 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.221402281878789465089589313507, −7.62954374641588235718006492065, −6.79230502198732864314633745798, −6.01444826736210837468924519845, −5.24154681791164573770536092994, −4.76706705720314731476536835342, −3.68523744465265841556690270503, −2.71239320609283552284776322612, −2.03744261910962500613971262945, −0.76044480432284251382048398807, 0.76044480432284251382048398807, 2.03744261910962500613971262945, 2.71239320609283552284776322612, 3.68523744465265841556690270503, 4.76706705720314731476536835342, 5.24154681791164573770536092994, 6.01444826736210837468924519845, 6.79230502198732864314633745798, 7.62954374641588235718006492065, 8.221402281878789465089589313507

Graph of the $Z$-function along the critical line