Properties

Label 2-5040-5.4-c1-0-5
Degree $2$
Conductor $5040$
Sign $-0.447 - 0.894i$
Analytic cond. $40.2446$
Root an. cond. $6.34386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + i)5-s i·7-s − 11-s i·13-s − 3i·17-s − 4·19-s + 2i·23-s + (3 − 4i)25-s − 29-s + 6·31-s + (1 + 2i)35-s − 2i·37-s + 10·41-s − 9i·47-s − 49-s + ⋯
L(s)  = 1  + (−0.894 + 0.447i)5-s − 0.377i·7-s − 0.301·11-s − 0.277i·13-s − 0.727i·17-s − 0.917·19-s + 0.417i·23-s + (0.600 − 0.800i)25-s − 0.185·29-s + 1.07·31-s + (0.169 + 0.338i)35-s − 0.328i·37-s + 1.56·41-s − 1.31i·47-s − 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5040\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(40.2446\)
Root analytic conductor: \(6.34386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5040} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5040,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6161888241\)
\(L(\frac12)\) \(\approx\) \(0.6161888241\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (2 - i)T \)
7 \( 1 + iT \)
good11 \( 1 + T + 11T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 + 3iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 + T + 29T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 9iT - 47T^{2} \)
53 \( 1 - 14iT - 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 - 10iT - 67T^{2} \)
71 \( 1 + 16T + 71T^{2} \)
73 \( 1 - 10iT - 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 - 19iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.395565788404518260586571605794, −7.57460813863053973245246217736, −7.26736350244204974636210448635, −6.37822251676539880714682177670, −5.62036477641083055526104219028, −4.56039797867431465394370343944, −4.10445279714158812480481183592, −3.10962613931106203746762076164, −2.44102233786440693658150136763, −0.965779983167552295787105672169, 0.19847007308049571313134729690, 1.52016929022024017850096624061, 2.60085696512579932956849030651, 3.51293061900044232850777348233, 4.42920133830405890444571571155, 4.80980032008825824645681724315, 5.97458484732942600484325972926, 6.43984449003284318264038877093, 7.51065617365675916708942451567, 7.982300696960332248178305040233

Graph of the $Z$-function along the critical line