L(s) = 1 | + (−2 + i)5-s − i·7-s − 11-s − i·13-s − 3i·17-s − 4·19-s + 2i·23-s + (3 − 4i)25-s − 29-s + 6·31-s + (1 + 2i)35-s − 2i·37-s + 10·41-s − 9i·47-s − 49-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.447i)5-s − 0.377i·7-s − 0.301·11-s − 0.277i·13-s − 0.727i·17-s − 0.917·19-s + 0.417i·23-s + (0.600 − 0.800i)25-s − 0.185·29-s + 1.07·31-s + (0.169 + 0.338i)35-s − 0.328i·37-s + 1.56·41-s − 1.31i·47-s − 0.142·49-s + ⋯ |
Λ(s)=(=(5040s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(5040s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
5040
= 24⋅32⋅5⋅7
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
40.2446 |
Root analytic conductor: |
6.34386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5040(1009,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5040, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.6161888241 |
L(21) |
≈ |
0.6161888241 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2−i)T |
| 7 | 1+iT |
good | 11 | 1+T+11T2 |
| 13 | 1+iT−13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1+T+29T2 |
| 31 | 1−6T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+9iT−47T2 |
| 53 | 1−14iT−53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1−10iT−67T2 |
| 71 | 1+16T+71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1+11T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−12T+89T2 |
| 97 | 1−19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.395565788404518260586571605794, −7.57460813863053973245246217736, −7.26736350244204974636210448635, −6.37822251676539880714682177670, −5.62036477641083055526104219028, −4.56039797867431465394370343944, −4.10445279714158812480481183592, −3.10962613931106203746762076164, −2.44102233786440693658150136763, −0.965779983167552295787105672169,
0.19847007308049571313134729690, 1.52016929022024017850096624061, 2.60085696512579932956849030651, 3.51293061900044232850777348233, 4.42920133830405890444571571155, 4.80980032008825824645681724315, 5.97458484732942600484325972926, 6.43984449003284318264038877093, 7.51065617365675916708942451567, 7.982300696960332248178305040233