L(s) = 1 | − 3·3-s − 8·4-s + 12·5-s − 2·7-s + 9·9-s + 36·11-s + 24·12-s − 36·15-s + 64·16-s − 78·17-s − 74·19-s − 96·20-s + 6·21-s − 96·23-s + 19·25-s − 27·27-s + 16·28-s + 18·29-s + 214·31-s − 108·33-s − 24·35-s − 72·36-s + 286·37-s + 384·41-s + 524·43-s − 288·44-s + 108·45-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s + 1.07·5-s − 0.107·7-s + 1/3·9-s + 0.986·11-s + 0.577·12-s − 0.619·15-s + 16-s − 1.11·17-s − 0.893·19-s − 1.07·20-s + 0.0623·21-s − 0.870·23-s + 0.151·25-s − 0.192·27-s + 0.107·28-s + 0.115·29-s + 1.23·31-s − 0.569·33-s − 0.115·35-s − 1/3·36-s + 1.27·37-s + 1.46·41-s + 1.85·43-s − 0.986·44-s + 0.357·45-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.425778413 |
L(21) |
≈ |
1.425778413 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+pT |
| 13 | 1 |
good | 2 | 1+p3T2 |
| 5 | 1−12T+p3T2 |
| 7 | 1+2T+p3T2 |
| 11 | 1−36T+p3T2 |
| 17 | 1+78T+p3T2 |
| 19 | 1+74T+p3T2 |
| 23 | 1+96T+p3T2 |
| 29 | 1−18T+p3T2 |
| 31 | 1−214T+p3T2 |
| 37 | 1−286T+p3T2 |
| 41 | 1−384T+p3T2 |
| 43 | 1−524T+p3T2 |
| 47 | 1+300T+p3T2 |
| 53 | 1−558T+p3T2 |
| 59 | 1+576T+p3T2 |
| 61 | 1−74T+p3T2 |
| 67 | 1+38T+p3T2 |
| 71 | 1−456T+p3T2 |
| 73 | 1−682T+p3T2 |
| 79 | 1−704T+p3T2 |
| 83 | 1−888T+p3T2 |
| 89 | 1−1020T+p3T2 |
| 97 | 1+110T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35799618265716317387053278380, −9.540365643710024220110592462692, −9.024165108235927590371941439577, −7.903894330848768917816924189738, −6.37086881826297221728138093553, −6.04387648420180379982702614490, −4.73841640533161114360269252364, −4.01776500521957705696944555852, −2.20404805590089038910357439652, −0.77878815646777223540205976655,
0.77878815646777223540205976655, 2.20404805590089038910357439652, 4.01776500521957705696944555852, 4.73841640533161114360269252364, 6.04387648420180379982702614490, 6.37086881826297221728138093553, 7.903894330848768917816924189738, 9.024165108235927590371941439577, 9.540365643710024220110592462692, 10.35799618265716317387053278380