L(s) = 1 | − 5.36·2-s + 3·3-s + 20.7·4-s + 2.69·5-s − 16.0·6-s + 15.2·7-s − 68.5·8-s + 9·9-s − 14.4·10-s − 66.8·11-s + 62.3·12-s − 81.5·14-s + 8.08·15-s + 201.·16-s + 4.16·17-s − 48.2·18-s + 26.0·19-s + 56.0·20-s + 45.6·21-s + 358.·22-s + 47.3·23-s − 205.·24-s − 117.·25-s + 27·27-s + 315.·28-s + 257.·29-s − 43.3·30-s + ⋯ |
L(s) = 1 | − 1.89·2-s + 0.577·3-s + 2.59·4-s + 0.241·5-s − 1.09·6-s + 0.820·7-s − 3.03·8-s + 0.333·9-s − 0.457·10-s − 1.83·11-s + 1.49·12-s − 1.55·14-s + 0.139·15-s + 3.14·16-s + 0.0594·17-s − 0.632·18-s + 0.314·19-s + 0.626·20-s + 0.473·21-s + 3.47·22-s + 0.429·23-s − 1.74·24-s − 0.941·25-s + 0.192·27-s + 2.13·28-s + 1.64·29-s − 0.264·30-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.036958037 |
L(21) |
≈ |
1.036958037 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 13 | 1 |
good | 2 | 1+5.36T+8T2 |
| 5 | 1−2.69T+125T2 |
| 7 | 1−15.2T+343T2 |
| 11 | 1+66.8T+1.33e3T2 |
| 17 | 1−4.16T+4.91e3T2 |
| 19 | 1−26.0T+6.85e3T2 |
| 23 | 1−47.3T+1.21e4T2 |
| 29 | 1−257.T+2.43e4T2 |
| 31 | 1−206.T+2.97e4T2 |
| 37 | 1−175.T+5.06e4T2 |
| 41 | 1−156.T+6.89e4T2 |
| 43 | 1−51.9T+7.95e4T2 |
| 47 | 1+354.T+1.03e5T2 |
| 53 | 1+10.4T+1.48e5T2 |
| 59 | 1−445.T+2.05e5T2 |
| 61 | 1−119.T+2.26e5T2 |
| 67 | 1+22.4T+3.00e5T2 |
| 71 | 1−285.T+3.57e5T2 |
| 73 | 1−740.T+3.89e5T2 |
| 79 | 1+547.T+4.93e5T2 |
| 83 | 1−603.T+5.71e5T2 |
| 89 | 1−215.T+7.04e5T2 |
| 97 | 1−1.44e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18626469744715005230456944119, −9.697453351880264943999908521871, −8.508602949873867661428037617495, −8.057917550880501202535927941494, −7.44918223507081942194450507813, −6.26489176961936937539319986463, −4.96627401109933075391853403715, −2.90055856612341500909020224567, −2.12236369668891410282893892752, −0.808707953307720000271987847266,
0.808707953307720000271987847266, 2.12236369668891410282893892752, 2.90055856612341500909020224567, 4.96627401109933075391853403715, 6.26489176961936937539319986463, 7.44918223507081942194450507813, 8.057917550880501202535927941494, 8.508602949873867661428037617495, 9.697453351880264943999908521871, 10.18626469744715005230456944119