Properties

Label 2-507-1.1-c3-0-2
Degree $2$
Conductor $507$
Sign $1$
Analytic cond. $29.9139$
Root an. cond. $5.46936$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.04·2-s + 3·3-s − 3.82·4-s − 12.0·5-s − 6.12·6-s − 29.7·7-s + 24.1·8-s + 9·9-s + 24.6·10-s − 28.0·11-s − 11.4·12-s + 60.7·14-s − 36.2·15-s − 18.7·16-s − 50.6·17-s − 18.3·18-s − 105.·19-s + 46.2·20-s − 89.2·21-s + 57.3·22-s − 160.·23-s + 72.4·24-s + 20.9·25-s + 27·27-s + 113.·28-s + 140.·29-s + 74.0·30-s + ⋯
L(s)  = 1  − 0.722·2-s + 0.577·3-s − 0.478·4-s − 1.08·5-s − 0.416·6-s − 1.60·7-s + 1.06·8-s + 0.333·9-s + 0.780·10-s − 0.769·11-s − 0.276·12-s + 1.15·14-s − 0.623·15-s − 0.292·16-s − 0.722·17-s − 0.240·18-s − 1.26·19-s + 0.517·20-s − 0.927·21-s + 0.555·22-s − 1.45·23-s + 0.616·24-s + 0.167·25-s + 0.192·27-s + 0.768·28-s + 0.897·29-s + 0.450·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(29.9139\)
Root analytic conductor: \(5.46936\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2837534762\)
\(L(\frac12)\) \(\approx\) \(0.2837534762\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
13 \( 1 \)
good2 \( 1 + 2.04T + 8T^{2} \)
5 \( 1 + 12.0T + 125T^{2} \)
7 \( 1 + 29.7T + 343T^{2} \)
11 \( 1 + 28.0T + 1.33e3T^{2} \)
17 \( 1 + 50.6T + 4.91e3T^{2} \)
19 \( 1 + 105.T + 6.85e3T^{2} \)
23 \( 1 + 160.T + 1.21e4T^{2} \)
29 \( 1 - 140.T + 2.43e4T^{2} \)
31 \( 1 + 223.T + 2.97e4T^{2} \)
37 \( 1 - 228.T + 5.06e4T^{2} \)
41 \( 1 - 295.T + 6.89e4T^{2} \)
43 \( 1 - 192.T + 7.95e4T^{2} \)
47 \( 1 + 36.9T + 1.03e5T^{2} \)
53 \( 1 - 149.T + 1.48e5T^{2} \)
59 \( 1 + 438.T + 2.05e5T^{2} \)
61 \( 1 - 286.T + 2.26e5T^{2} \)
67 \( 1 - 537.T + 3.00e5T^{2} \)
71 \( 1 + 102.T + 3.57e5T^{2} \)
73 \( 1 - 75.5T + 3.89e5T^{2} \)
79 \( 1 - 17.5T + 4.93e5T^{2} \)
83 \( 1 + 1.46e3T + 5.71e5T^{2} \)
89 \( 1 - 334.T + 7.04e5T^{2} \)
97 \( 1 - 748.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24781102541153325182718732055, −9.537176155319608814046380898982, −8.700209915987861492523847717149, −7.984635170979513700630639701958, −7.20195118050387779115268511079, −6.06315207404290797158305446601, −4.38195524046886459599132704104, −3.74783416555354025034339180164, −2.41995946035335524971548540966, −0.33755533381617029524801544648, 0.33755533381617029524801544648, 2.41995946035335524971548540966, 3.74783416555354025034339180164, 4.38195524046886459599132704104, 6.06315207404290797158305446601, 7.20195118050387779115268511079, 7.984635170979513700630639701958, 8.700209915987861492523847717149, 9.537176155319608814046380898982, 10.24781102541153325182718732055

Graph of the $Z$-function along the critical line