L(s) = 1 | − 2.04·2-s + 3·3-s − 3.82·4-s − 12.0·5-s − 6.12·6-s − 29.7·7-s + 24.1·8-s + 9·9-s + 24.6·10-s − 28.0·11-s − 11.4·12-s + 60.7·14-s − 36.2·15-s − 18.7·16-s − 50.6·17-s − 18.3·18-s − 105.·19-s + 46.2·20-s − 89.2·21-s + 57.3·22-s − 160.·23-s + 72.4·24-s + 20.9·25-s + 27·27-s + 113.·28-s + 140.·29-s + 74.0·30-s + ⋯ |
L(s) = 1 | − 0.722·2-s + 0.577·3-s − 0.478·4-s − 1.08·5-s − 0.416·6-s − 1.60·7-s + 1.06·8-s + 0.333·9-s + 0.780·10-s − 0.769·11-s − 0.276·12-s + 1.15·14-s − 0.623·15-s − 0.292·16-s − 0.722·17-s − 0.240·18-s − 1.26·19-s + 0.517·20-s − 0.927·21-s + 0.555·22-s − 1.45·23-s + 0.616·24-s + 0.167·25-s + 0.192·27-s + 0.768·28-s + 0.897·29-s + 0.450·30-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.2837534762 |
L(21) |
≈ |
0.2837534762 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 13 | 1 |
good | 2 | 1+2.04T+8T2 |
| 5 | 1+12.0T+125T2 |
| 7 | 1+29.7T+343T2 |
| 11 | 1+28.0T+1.33e3T2 |
| 17 | 1+50.6T+4.91e3T2 |
| 19 | 1+105.T+6.85e3T2 |
| 23 | 1+160.T+1.21e4T2 |
| 29 | 1−140.T+2.43e4T2 |
| 31 | 1+223.T+2.97e4T2 |
| 37 | 1−228.T+5.06e4T2 |
| 41 | 1−295.T+6.89e4T2 |
| 43 | 1−192.T+7.95e4T2 |
| 47 | 1+36.9T+1.03e5T2 |
| 53 | 1−149.T+1.48e5T2 |
| 59 | 1+438.T+2.05e5T2 |
| 61 | 1−286.T+2.26e5T2 |
| 67 | 1−537.T+3.00e5T2 |
| 71 | 1+102.T+3.57e5T2 |
| 73 | 1−75.5T+3.89e5T2 |
| 79 | 1−17.5T+4.93e5T2 |
| 83 | 1+1.46e3T+5.71e5T2 |
| 89 | 1−334.T+7.04e5T2 |
| 97 | 1−748.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24781102541153325182718732055, −9.537176155319608814046380898982, −8.700209915987861492523847717149, −7.984635170979513700630639701958, −7.20195118050387779115268511079, −6.06315207404290797158305446601, −4.38195524046886459599132704104, −3.74783416555354025034339180164, −2.41995946035335524971548540966, −0.33755533381617029524801544648,
0.33755533381617029524801544648, 2.41995946035335524971548540966, 3.74783416555354025034339180164, 4.38195524046886459599132704104, 6.06315207404290797158305446601, 7.20195118050387779115268511079, 7.984635170979513700630639701958, 8.700209915987861492523847717149, 9.537176155319608814046380898982, 10.24781102541153325182718732055