L(s) = 1 | − 3.17·2-s + 3·3-s + 2.07·4-s + 6.74·5-s − 9.52·6-s − 14.1·7-s + 18.8·8-s + 9·9-s − 21.3·10-s + 62.4·11-s + 6.21·12-s + 44.9·14-s + 20.2·15-s − 76.2·16-s − 58.6·17-s − 28.5·18-s + 64.1·19-s + 13.9·20-s − 42.5·21-s − 198.·22-s + 10.9·23-s + 56.4·24-s − 79.5·25-s + 27·27-s − 29.3·28-s + 216.·29-s − 64.1·30-s + ⋯ |
L(s) = 1 | − 1.12·2-s + 0.577·3-s + 0.258·4-s + 0.602·5-s − 0.647·6-s − 0.765·7-s + 0.831·8-s + 0.333·9-s − 0.676·10-s + 1.71·11-s + 0.149·12-s + 0.858·14-s + 0.348·15-s − 1.19·16-s − 0.836·17-s − 0.373·18-s + 0.774·19-s + 0.156·20-s − 0.441·21-s − 1.92·22-s + 0.0990·23-s + 0.480·24-s − 0.636·25-s + 0.192·27-s − 0.198·28-s + 1.38·29-s − 0.390·30-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.412372117 |
L(21) |
≈ |
1.412372117 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 13 | 1 |
good | 2 | 1+3.17T+8T2 |
| 5 | 1−6.74T+125T2 |
| 7 | 1+14.1T+343T2 |
| 11 | 1−62.4T+1.33e3T2 |
| 17 | 1+58.6T+4.91e3T2 |
| 19 | 1−64.1T+6.85e3T2 |
| 23 | 1−10.9T+1.21e4T2 |
| 29 | 1−216.T+2.43e4T2 |
| 31 | 1+38.6T+2.97e4T2 |
| 37 | 1−423.T+5.06e4T2 |
| 41 | 1+366.T+6.89e4T2 |
| 43 | 1+128.T+7.95e4T2 |
| 47 | 1+93.1T+1.03e5T2 |
| 53 | 1−131.T+1.48e5T2 |
| 59 | 1−386.T+2.05e5T2 |
| 61 | 1+621.T+2.26e5T2 |
| 67 | 1−865.T+3.00e5T2 |
| 71 | 1+607.T+3.57e5T2 |
| 73 | 1−980.T+3.89e5T2 |
| 79 | 1−1.33e3T+4.93e5T2 |
| 83 | 1−907.T+5.71e5T2 |
| 89 | 1+1.03e3T+7.04e5T2 |
| 97 | 1−1.04e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.937782183640601512661676818711, −9.582566758672875821991852670081, −8.938736073904058880209565818430, −8.095628366696897589884875362340, −6.92011381290682185407695689889, −6.29939397454874708465557563107, −4.64954552111971146038011981969, −3.51405929528235664655369012913, −2.03731445457537142740748997824, −0.886995777907303732887522010920,
0.886995777907303732887522010920, 2.03731445457537142740748997824, 3.51405929528235664655369012913, 4.64954552111971146038011981969, 6.29939397454874708465557563107, 6.92011381290682185407695689889, 8.095628366696897589884875362340, 8.938736073904058880209565818430, 9.582566758672875821991852670081, 9.937782183640601512661676818711