L(s) = 1 | − 5.52·2-s + 3·3-s + 22.4·4-s + 6.08·5-s − 16.5·6-s − 20.2·7-s − 80.0·8-s + 9·9-s − 33.5·10-s + 48.8·11-s + 67.4·12-s + 111.·14-s + 18.2·15-s + 262.·16-s − 37.7·17-s − 49.7·18-s − 120.·19-s + 136.·20-s − 60.8·21-s − 269.·22-s + 74.8·23-s − 240.·24-s − 88.0·25-s + 27·27-s − 456.·28-s − 112.·29-s − 100.·30-s + ⋯ |
L(s) = 1 | − 1.95·2-s + 0.577·3-s + 2.81·4-s + 0.543·5-s − 1.12·6-s − 1.09·7-s − 3.53·8-s + 0.333·9-s − 1.06·10-s + 1.33·11-s + 1.62·12-s + 2.13·14-s + 0.314·15-s + 4.09·16-s − 0.538·17-s − 0.650·18-s − 1.45·19-s + 1.52·20-s − 0.631·21-s − 2.61·22-s + 0.678·23-s − 2.04·24-s − 0.704·25-s + 0.192·27-s − 3.07·28-s − 0.721·29-s − 0.613·30-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 13 | 1 |
good | 2 | 1+5.52T+8T2 |
| 5 | 1−6.08T+125T2 |
| 7 | 1+20.2T+343T2 |
| 11 | 1−48.8T+1.33e3T2 |
| 17 | 1+37.7T+4.91e3T2 |
| 19 | 1+120.T+6.85e3T2 |
| 23 | 1−74.8T+1.21e4T2 |
| 29 | 1+112.T+2.43e4T2 |
| 31 | 1+113.T+2.97e4T2 |
| 37 | 1−85.7T+5.06e4T2 |
| 41 | 1−133.T+6.89e4T2 |
| 43 | 1+319.T+7.95e4T2 |
| 47 | 1−401.T+1.03e5T2 |
| 53 | 1+384.T+1.48e5T2 |
| 59 | 1−121.T+2.05e5T2 |
| 61 | 1−220.T+2.26e5T2 |
| 67 | 1+975.T+3.00e5T2 |
| 71 | 1+106.T+3.57e5T2 |
| 73 | 1+43.2T+3.89e5T2 |
| 79 | 1−539.T+4.93e5T2 |
| 83 | 1+811.T+5.71e5T2 |
| 89 | 1−1.13e3T+7.04e5T2 |
| 97 | 1−229.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.716125657346578332865629553293, −9.167301524070757441263745039564, −8.681393894204845183816660822259, −7.48686275777391827635344128964, −6.61077475051217236407874608553, −6.11326066466291660911906801148, −3.72881508368956882778015543095, −2.49189862732150881736520245221, −1.51361866498344786989979103022, 0,
1.51361866498344786989979103022, 2.49189862732150881736520245221, 3.72881508368956882778015543095, 6.11326066466291660911906801148, 6.61077475051217236407874608553, 7.48686275777391827635344128964, 8.681393894204845183816660822259, 9.167301524070757441263745039564, 9.716125657346578332865629553293