L(s) = 1 | + (−2.04 − 1.17i)2-s + (0.5 − 0.866i)3-s + (1.77 + 3.07i)4-s + 3.69i·5-s + (−2.04 + 1.17i)6-s + (0.694 − 0.400i)7-s − 3.66i·8-s + (−0.499 − 0.866i)9-s + (4.35 − 7.53i)10-s + (−2.46 − 1.42i)11-s + 3.55·12-s − 1.89·14-s + (3.19 + 1.84i)15-s + (−0.763 + 1.32i)16-s + (1.46 + 2.54i)17-s + 2.35i·18-s + ⋯ |
L(s) = 1 | + (−1.44 − 0.833i)2-s + (0.288 − 0.499i)3-s + (0.888 + 1.53i)4-s + 1.65i·5-s + (−0.833 + 0.481i)6-s + (0.262 − 0.151i)7-s − 1.29i·8-s + (−0.166 − 0.288i)9-s + (1.37 − 2.38i)10-s + (−0.744 − 0.429i)11-s + 1.02·12-s − 0.505·14-s + (0.825 + 0.476i)15-s + (−0.190 + 0.330i)16-s + (0.356 + 0.617i)17-s + 0.555i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.455 - 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.455 - 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.435108 + 0.266019i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.435108 + 0.266019i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (2.04 + 1.17i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 3.69iT - 5T^{2} \) |
| 7 | \( 1 + (-0.694 + 0.400i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.46 + 1.42i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.46 - 2.54i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.11 - 1.22i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.89 - 6.74i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.92 - 3.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.34iT - 31T^{2} \) |
| 37 | \( 1 + (-6.44 - 3.72i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.736 - 0.425i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.807 + 1.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.44iT - 47T^{2} \) |
| 53 | \( 1 + 9.96T + 53T^{2} \) |
| 59 | \( 1 + (-4.66 + 2.69i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.62 - 11.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (12.4 + 7.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.03 + 4.06i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11.8iT - 73T^{2} \) |
| 79 | \( 1 - 5.40T + 79T^{2} \) |
| 83 | \( 1 - 7.04iT - 83T^{2} \) |
| 89 | \( 1 + (-0.980 - 0.565i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.14 - 2.97i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92675639530558140026838741364, −10.24979141157167443584342030334, −9.523729804909872185004053238413, −8.242648406883936580186942292406, −7.77804505485784488894905978475, −6.94970474369351385533375332311, −5.83934673171575046384065996799, −3.56560902640320203036525017865, −2.75828251641600142317344336650, −1.67828296770557678097827034928,
0.45991190979684038426009964869, 2.10227553599713640332473178323, 4.34838774373899056277673870030, 5.19758395826911196279200305482, 6.23184189177478403338543008267, 7.69304719048801530127815822352, 8.154225159643601055499899246553, 8.915225298531381763939975227426, 9.572714573931590088901959036782, 10.24094942665387753025999034451