L(s) = 1 | + (0.249 + 0.249i)2-s + (0.892 − 1.48i)3-s − 1.87i·4-s + (2.45 + 2.45i)5-s + (0.592 − 0.147i)6-s + (−0.821 − 0.821i)7-s + (0.965 − 0.965i)8-s + (−1.40 − 2.64i)9-s + 1.22i·10-s + (1.32 − 1.32i)11-s + (−2.78 − 1.67i)12-s − 0.409i·14-s + (5.84 − 1.45i)15-s − 3.27·16-s + 5.90·17-s + (0.309 − 1.01i)18-s + ⋯ |
L(s) = 1 | + (0.176 + 0.176i)2-s + (0.515 − 0.857i)3-s − 0.937i·4-s + (1.09 + 1.09i)5-s + (0.241 − 0.0602i)6-s + (−0.310 − 0.310i)7-s + (0.341 − 0.341i)8-s + (−0.469 − 0.882i)9-s + 0.387i·10-s + (0.399 − 0.399i)11-s + (−0.803 − 0.483i)12-s − 0.109i·14-s + (1.50 − 0.375i)15-s − 0.817·16-s + 1.43·17-s + (0.0728 − 0.238i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 + 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.547 + 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87702 - 1.01444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87702 - 1.01444i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.892 + 1.48i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.249 - 0.249i)T + 2iT^{2} \) |
| 5 | \( 1 + (-2.45 - 2.45i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.821 + 0.821i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.32 + 1.32i)T - 11iT^{2} \) |
| 17 | \( 1 - 5.90T + 17T^{2} \) |
| 19 | \( 1 + (3.48 - 3.48i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.70T + 23T^{2} \) |
| 29 | \( 1 - 2.68iT - 29T^{2} \) |
| 31 | \( 1 + (-3.22 + 3.22i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.52 + 1.52i)T + 37iT^{2} \) |
| 41 | \( 1 + (-4.81 - 4.81i)T + 41iT^{2} \) |
| 43 | \( 1 + 5.55iT - 43T^{2} \) |
| 47 | \( 1 + (2.23 - 2.23i)T - 47iT^{2} \) |
| 53 | \( 1 - 2.46iT - 53T^{2} \) |
| 59 | \( 1 + (7.07 - 7.07i)T - 59iT^{2} \) |
| 61 | \( 1 + 2.66T + 61T^{2} \) |
| 67 | \( 1 + (4.81 - 4.81i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.20 - 8.20i)T + 71iT^{2} \) |
| 73 | \( 1 + (-9.13 - 9.13i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.10T + 79T^{2} \) |
| 83 | \( 1 + (4.58 + 4.58i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.02 + 3.02i)T - 89iT^{2} \) |
| 97 | \( 1 + (8.67 - 8.67i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48545479384778241856424209929, −10.00345785789025749761235469228, −9.158545783030341858597141094662, −7.87168856936455888659207268929, −6.85540869795510000449484212612, −6.19938814734605184090597124431, −5.64783103429771858914482779757, −3.73628470368891749018420001968, −2.49925535175065792484637888342, −1.34102885512164707083425181694,
2.00889621195560940082665474617, 3.16308401819854397215095698781, 4.36596080910722447455713867510, 5.11562896806650661813061309334, 6.25051739756647723145342221977, 7.77600177270344346999788077946, 8.575464508827265034998819502364, 9.327178524481102551279686353970, 9.860809678260128355569149174544, 10.97353543168008804390060134517