Properties

Label 2-51-1.1-c3-0-5
Degree $2$
Conductor $51$
Sign $1$
Analytic cond. $3.00909$
Root an. cond. $1.73467$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.75·2-s + 3·3-s + 14.6·4-s − 7.65·5-s + 14.2·6-s − 31.5·7-s + 31.6·8-s + 9·9-s − 36.4·10-s − 7.18·11-s + 43.9·12-s + 84.3·13-s − 150.·14-s − 22.9·15-s + 33.5·16-s + 17·17-s + 42.8·18-s − 37.0·19-s − 112.·20-s − 94.7·21-s − 34.2·22-s + 150.·23-s + 95.0·24-s − 66.3·25-s + 401.·26-s + 27·27-s − 462.·28-s + ⋯
L(s)  = 1  + 1.68·2-s + 0.577·3-s + 1.83·4-s − 0.684·5-s + 0.971·6-s − 1.70·7-s + 1.40·8-s + 0.333·9-s − 1.15·10-s − 0.197·11-s + 1.05·12-s + 1.79·13-s − 2.87·14-s − 0.395·15-s + 0.524·16-s + 0.242·17-s + 0.560·18-s − 0.447·19-s − 1.25·20-s − 0.984·21-s − 0.331·22-s + 1.36·23-s + 0.808·24-s − 0.531·25-s + 3.02·26-s + 0.192·27-s − 3.12·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $1$
Analytic conductor: \(3.00909\)
Root analytic conductor: \(1.73467\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.080549932\)
\(L(\frac12)\) \(\approx\) \(3.080549932\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
17 \( 1 - 17T \)
good2 \( 1 - 4.75T + 8T^{2} \)
5 \( 1 + 7.65T + 125T^{2} \)
7 \( 1 + 31.5T + 343T^{2} \)
11 \( 1 + 7.18T + 1.33e3T^{2} \)
13 \( 1 - 84.3T + 2.19e3T^{2} \)
19 \( 1 + 37.0T + 6.85e3T^{2} \)
23 \( 1 - 150.T + 1.21e4T^{2} \)
29 \( 1 + 11.5T + 2.43e4T^{2} \)
31 \( 1 + 53.2T + 2.97e4T^{2} \)
37 \( 1 + 99.2T + 5.06e4T^{2} \)
41 \( 1 - 118.T + 6.89e4T^{2} \)
43 \( 1 + 456.T + 7.95e4T^{2} \)
47 \( 1 - 571.T + 1.03e5T^{2} \)
53 \( 1 - 462.T + 1.48e5T^{2} \)
59 \( 1 - 48.0T + 2.05e5T^{2} \)
61 \( 1 - 59.5T + 2.26e5T^{2} \)
67 \( 1 + 740.T + 3.00e5T^{2} \)
71 \( 1 + 930.T + 3.57e5T^{2} \)
73 \( 1 + 697.T + 3.89e5T^{2} \)
79 \( 1 - 1.03e3T + 4.93e5T^{2} \)
83 \( 1 + 22.2T + 5.71e5T^{2} \)
89 \( 1 + 369.T + 7.04e5T^{2} \)
97 \( 1 - 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.00534743570540833556941317998, −13.48337910026184903997176019376, −13.15831831979228801890627319657, −12.01112842167016326974114611538, −10.65569400918044152494048314730, −8.891722224660689997487696992764, −7.05110697961841936994482415663, −5.92696068563719452301435510512, −3.93993670382707110859565914954, −3.13224268386421413321316067651, 3.13224268386421413321316067651, 3.93993670382707110859565914954, 5.92696068563719452301435510512, 7.05110697961841936994482415663, 8.891722224660689997487696992764, 10.65569400918044152494048314730, 12.01112842167016326974114611538, 13.15831831979228801890627319657, 13.48337910026184903997176019376, 15.00534743570540833556941317998

Graph of the $Z$-function along the critical line