Properties

Label 2-51-1.1-c3-0-7
Degree $2$
Conductor $51$
Sign $-1$
Analytic cond. $3.00909$
Root an. cond. $1.73467$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 7·4-s − 10·5-s − 3·6-s − 8·7-s − 15·8-s + 9·9-s − 10·10-s + 12·11-s + 21·12-s − 26·13-s − 8·14-s + 30·15-s + 41·16-s + 17·17-s + 9·18-s − 148·19-s + 70·20-s + 24·21-s + 12·22-s + 152·23-s + 45·24-s − 25·25-s − 26·26-s − 27·27-s + 56·28-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.577·3-s − 7/8·4-s − 0.894·5-s − 0.204·6-s − 0.431·7-s − 0.662·8-s + 1/3·9-s − 0.316·10-s + 0.328·11-s + 0.505·12-s − 0.554·13-s − 0.152·14-s + 0.516·15-s + 0.640·16-s + 0.242·17-s + 0.117·18-s − 1.78·19-s + 0.782·20-s + 0.249·21-s + 0.116·22-s + 1.37·23-s + 0.382·24-s − 1/5·25-s − 0.196·26-s − 0.192·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.00909\)
Root analytic conductor: \(1.73467\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
17 \( 1 - p T \)
good2 \( 1 - T + p^{3} T^{2} \)
5 \( 1 + 2 p T + p^{3} T^{2} \)
7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 + 2 p T + p^{3} T^{2} \)
19 \( 1 + 148 T + p^{3} T^{2} \)
23 \( 1 - 152 T + p^{3} T^{2} \)
29 \( 1 + 66 T + p^{3} T^{2} \)
31 \( 1 + 32 T + p^{3} T^{2} \)
37 \( 1 + 266 T + p^{3} T^{2} \)
41 \( 1 + 6 T + p^{3} T^{2} \)
43 \( 1 + 92 T + p^{3} T^{2} \)
47 \( 1 + 288 T + p^{3} T^{2} \)
53 \( 1 + 546 T + p^{3} T^{2} \)
59 \( 1 - 420 T + p^{3} T^{2} \)
61 \( 1 - 350 T + p^{3} T^{2} \)
67 \( 1 - 940 T + p^{3} T^{2} \)
71 \( 1 - 424 T + p^{3} T^{2} \)
73 \( 1 - 378 T + p^{3} T^{2} \)
79 \( 1 - 288 T + p^{3} T^{2} \)
83 \( 1 - 748 T + p^{3} T^{2} \)
89 \( 1 + 1558 T + p^{3} T^{2} \)
97 \( 1 - 530 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53904281689073804001849152507, −13.03347838368574969541591465291, −12.34642122972081777803581255646, −11.08693016308593066975550004235, −9.646955761799477396510989148532, −8.317446370554701286463420870181, −6.68359733601792221802316329844, −5.02818678526402075597091196574, −3.74899332871973191320188228928, 0, 3.74899332871973191320188228928, 5.02818678526402075597091196574, 6.68359733601792221802316329844, 8.317446370554701286463420870181, 9.646955761799477396510989148532, 11.08693016308593066975550004235, 12.34642122972081777803581255646, 13.03347838368574969541591465291, 14.53904281689073804001849152507

Graph of the $Z$-function along the critical line