L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.41 − i)3-s + 1.00i·4-s + (2.21 − 0.330i)5-s + (0.292 + 1.70i)6-s + (0.532 − 0.532i)7-s + (0.707 − 0.707i)8-s + (1.00 + 2.82i)9-s + (−1.79 − 1.33i)10-s − 1.41i·11-s + (1.00 − 1.41i)12-s + (3.59 + 3.59i)13-s − 0.753·14-s + (−3.45 − 1.74i)15-s − 1.00·16-s + (0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.816 − 0.577i)3-s + 0.500i·4-s + (0.989 − 0.147i)5-s + (0.119 + 0.696i)6-s + (0.201 − 0.201i)7-s + (0.250 − 0.250i)8-s + (0.333 + 0.942i)9-s + (−0.568 − 0.420i)10-s − 0.426i·11-s + (0.288 − 0.408i)12-s + (0.996 + 0.996i)13-s − 0.201·14-s + (−0.892 − 0.450i)15-s − 0.250·16-s + (0.171 + 0.171i)17-s + ⋯ |
Λ(s)=(=(510s/2ΓC(s)L(s)(0.522+0.852i)Λ(2−s)
Λ(s)=(=(510s/2ΓC(s+1/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
510
= 2⋅3⋅5⋅17
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
4.07237 |
Root analytic conductor: |
2.01801 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ510(443,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 510, ( :1/2), 0.522+0.852i)
|
Particular Values
L(1) |
≈ |
0.951576−0.532780i |
L(21) |
≈ |
0.951576−0.532780i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1+(1.41+i)T |
| 5 | 1+(−2.21+0.330i)T |
| 17 | 1+(−0.707−0.707i)T |
good | 7 | 1+(−0.532+0.532i)T−7iT2 |
| 11 | 1+1.41iT−11T2 |
| 13 | 1+(−3.59−3.59i)T+13iT2 |
| 19 | 1−7.17iT−19T2 |
| 23 | 1+(−6.47+6.47i)T−23iT2 |
| 29 | 1+1.23T+29T2 |
| 31 | 1+4.51T+31T2 |
| 37 | 1+(−6.30+6.30i)T−37iT2 |
| 41 | 1+4.69iT−41T2 |
| 43 | 1+(4.83+4.83i)T+43iT2 |
| 47 | 1+(6+6i)T+47iT2 |
| 53 | 1+(0.660−0.660i)T−53iT2 |
| 59 | 1−14.8T+59T2 |
| 61 | 1+2.79T+61T2 |
| 67 | 1+(−6.49+6.49i)T−67iT2 |
| 71 | 1−8.43iT−71T2 |
| 73 | 1+(−1.32−1.32i)T+73iT2 |
| 79 | 1+4.77iT−79T2 |
| 83 | 1+(8.83−8.83i)T−83iT2 |
| 89 | 1−2.73T+89T2 |
| 97 | 1+(10.7−10.7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81044765710181406142985538351, −10.09682533367883470464463969551, −9.000141482959382679185344062740, −8.230004685249573338997156825535, −6.99656774198914734443247858321, −6.20063898470300525523863461268, −5.28776715153488829075120662367, −3.91083591309264782997747382449, −2.14443296224122856093107772874, −1.14364697608481355145141205339,
1.20301184455750855244791423486, 3.10450695873889055521030188420, 4.87061478386813556376300736298, 5.47040331301032000674636515076, 6.38989991044200515595775407590, 7.21027611562741004367830158289, 8.567491626107084120520519121114, 9.467925007889555538757796716526, 9.958385326308910840039387375432, 11.09898139338879660392914174607