L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.41 − i)3-s + 1.00i·4-s + (2.21 − 0.330i)5-s + (0.292 + 1.70i)6-s + (0.532 − 0.532i)7-s + (0.707 − 0.707i)8-s + (1.00 + 2.82i)9-s + (−1.79 − 1.33i)10-s − 1.41i·11-s + (1.00 − 1.41i)12-s + (3.59 + 3.59i)13-s − 0.753·14-s + (−3.45 − 1.74i)15-s − 1.00·16-s + (0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.816 − 0.577i)3-s + 0.500i·4-s + (0.989 − 0.147i)5-s + (0.119 + 0.696i)6-s + (0.201 − 0.201i)7-s + (0.250 − 0.250i)8-s + (0.333 + 0.942i)9-s + (−0.568 − 0.420i)10-s − 0.426i·11-s + (0.288 − 0.408i)12-s + (0.996 + 0.996i)13-s − 0.201·14-s + (−0.892 − 0.450i)15-s − 0.250·16-s + (0.171 + 0.171i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.951576 - 0.532780i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.951576 - 0.532780i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (1.41 + i)T \) |
| 5 | \( 1 + (-2.21 + 0.330i)T \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + (-0.532 + 0.532i)T - 7iT^{2} \) |
| 11 | \( 1 + 1.41iT - 11T^{2} \) |
| 13 | \( 1 + (-3.59 - 3.59i)T + 13iT^{2} \) |
| 19 | \( 1 - 7.17iT - 19T^{2} \) |
| 23 | \( 1 + (-6.47 + 6.47i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.23T + 29T^{2} \) |
| 31 | \( 1 + 4.51T + 31T^{2} \) |
| 37 | \( 1 + (-6.30 + 6.30i)T - 37iT^{2} \) |
| 41 | \( 1 + 4.69iT - 41T^{2} \) |
| 43 | \( 1 + (4.83 + 4.83i)T + 43iT^{2} \) |
| 47 | \( 1 + (6 + 6i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.660 - 0.660i)T - 53iT^{2} \) |
| 59 | \( 1 - 14.8T + 59T^{2} \) |
| 61 | \( 1 + 2.79T + 61T^{2} \) |
| 67 | \( 1 + (-6.49 + 6.49i)T - 67iT^{2} \) |
| 71 | \( 1 - 8.43iT - 71T^{2} \) |
| 73 | \( 1 + (-1.32 - 1.32i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.77iT - 79T^{2} \) |
| 83 | \( 1 + (8.83 - 8.83i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.73T + 89T^{2} \) |
| 97 | \( 1 + (10.7 - 10.7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81044765710181406142985538351, −10.09682533367883470464463969551, −9.000141482959382679185344062740, −8.230004685249573338997156825535, −6.99656774198914734443247858321, −6.20063898470300525523863461268, −5.28776715153488829075120662367, −3.91083591309264782997747382449, −2.14443296224122856093107772874, −1.14364697608481355145141205339,
1.20301184455750855244791423486, 3.10450695873889055521030188420, 4.87061478386813556376300736298, 5.47040331301032000674636515076, 6.38989991044200515595775407590, 7.21027611562741004367830158289, 8.567491626107084120520519121114, 9.467925007889555538757796716526, 9.958385326308910840039387375432, 11.09898139338879660392914174607