Properties

Label 2-5175-1.1-c1-0-20
Degree $2$
Conductor $5175$
Sign $1$
Analytic cond. $41.3225$
Root an. cond. $6.42826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 2·7-s − 3·8-s − 4·13-s − 2·14-s − 16-s + 2·17-s − 4·19-s + 23-s − 4·26-s + 2·28-s − 10·29-s + 4·31-s + 5·32-s + 2·34-s − 2·37-s − 4·38-s + 10·41-s − 2·43-s + 46-s + 8·47-s − 3·49-s + 4·52-s + 10·53-s + 6·56-s − 10·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.755·7-s − 1.06·8-s − 1.10·13-s − 0.534·14-s − 1/4·16-s + 0.485·17-s − 0.917·19-s + 0.208·23-s − 0.784·26-s + 0.377·28-s − 1.85·29-s + 0.718·31-s + 0.883·32-s + 0.342·34-s − 0.328·37-s − 0.648·38-s + 1.56·41-s − 0.304·43-s + 0.147·46-s + 1.16·47-s − 3/7·49-s + 0.554·52-s + 1.37·53-s + 0.801·56-s − 1.31·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5175\)    =    \(3^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(41.3225\)
Root analytic conductor: \(6.42826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.286753204\)
\(L(\frac12)\) \(\approx\) \(1.286753204\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.158419343959537475661275997633, −7.43918334459967781535831836234, −6.63550884652641025646177792791, −5.88397044187780158068176030942, −5.30541293154793434947141010050, −4.46527427055793605019210015089, −3.82617618923626444482449099861, −3.01788892315009954880909556281, −2.18373965623845132136210761823, −0.52823484155876893475860386148, 0.52823484155876893475860386148, 2.18373965623845132136210761823, 3.01788892315009954880909556281, 3.82617618923626444482449099861, 4.46527427055793605019210015089, 5.30541293154793434947141010050, 5.88397044187780158068176030942, 6.63550884652641025646177792791, 7.43918334459967781535831836234, 8.158419343959537475661275997633

Graph of the $Z$-function along the critical line